

GADCHIROLI

CHOICE BASE CREDIT SYSTEM (CBCS) SYLLABUS FOR M.Sc. TWO-YEARS DEGREE COURSE IN

BIOTECHNOLOGY

From

Academic Year

2016-2017

CHOICE BASED CREDIT SYSTEM (CBCS) SEMESTER PATTERN M.Sc. Biotechnology (PG) Program under Faculty of Science

(Affiliated Colleges) (W.e.f. Academic Year 2016-17)

Appendix-1

Scheme of teaching and examination under semester pattern Choice Based Credit System (CBCS) for M.Sc. Program in Biotechnology.

	Core Course	Ability Enhancement	Skill Based Course	Discipline Specific Elective
SEM I	Core 1 Th. Paper 1 (4 Credits) (4 Hours/Week)	Seminar I (1 Credit) (2 Hours/Week)		
	Core 2 Th. Paper 2(4 Credits) (4 Hours/Week)			
	Core 3 Th. Paper 3 (4 Credits) (4 Hours/Week)			
	Core 4 Th. Paper 4 (4 Credits) (4 Hours/Week)			
	Pract. Core Pr. 1 {Based on Core Th. 1&2} (4 Credits) (3-8 Hours/Week)			
	Pract. Core Pr. 2 {Based on Core Th. 3&4} (4 Credits) (3-8 Hours/Week)			

Total 25 Credits

	Core Subject	Ability Enhancement	Skill Based Course	Discipline Specific Elective
SEM II	Core 5 Th. Paper 5 (4 Credits) (4 Hours/Week)	Seminar II (1 Credit) (2		
		Hours/Week)		
	Core 6 Th. Paper 6 (4 Credits) (4 Hours/Week)			
	Core 7 Th. Paper 7 (4 Credits)			
	Core 8 Th. Paper 8 (4 Credits) (4 Hours/Week)			
	Pr. Core Pr. 3 (Based on Core Th.			
	5&6} (4 Credits) (3-8 Hours/Week)			
	Pr. Core Pr. 4 {Based on Core Th.			
	7&8} (4 Credits) (3-8 Hours/Week)			

Total 25 Credits

Scheme of teaching and examination under semester pattern Choice Based Credit System (CBCS) for M.Sc. Program.

			S	emest	er I						
		Teaching Scheme			Examination Scheme						
	Theory /	Hrs/ week				n in	Max. Marks			Minimum Marks	
Code	Practical	Theory	Practical	Total	Credit	Duration hrs.	External	Internal	Total	Theory	Practical
Core 1	Paper 1	4	-	4	4	3	80	20	100	40	
Core 2	Paper 2	4	-	4	4	3	80	20	100	40	
Core 3	Paper 3	4	-	4	4	3	80	20	100	40	
Core 4	Paper 4	4	-	4	4	3	80	20	100	40	
Pract. Core 1 & 2	Practical 1	-	8	8	4	3-8*	80	20	100	40	40
Pract. Core 3 & 4	Practical 2	-	8	8	4	3-8*	80	20	100	40	40
Seminar 1	Seminar 1	2	-	2	1			25	25	10	
TOTAL		18	16	34	25		480	145	625	170	80

Semester II

		Teaching Scheme			Examination Scheme						
		H	lrs/ we	ek		in		ax. rks			mum rks
Code	Theory / Practical	Theory	Practical	Total	Credit	Duration hrs.	External	Internal	Total	Theory	Practical
Core 5	Paper 5	4	-	4	4	3	80	20	100	40	
Core 6	Paper 6	4	-	4	4	3	80	20	100	40	
Core 7	Paper 7	4	-	4	4	3	80	20	100	40	
Core 8	Paper 8	4	-	4	4	3	80	20	100	40	
Pract. Core 5 & 6	Practical 3	-	8	8	4	3-8*	80	20	100	40	40
Pract. Core 7 & 8	Practical 4	-	8	8	4	3-8*	80	20	100	40	40
Seminar 2	Seminar 2	2	-	2	1			25	25	10	
TOTAL		18	16	34	25		480	145	625	170	80

Project Work/Dissertation Scheme / Guidelines for the Students, Supervisors and Examiners

Every student is required to carry out a project work in semester IV. The project can be of following types. A) Experimental Project Work; OR B) Field Based Project Work; OR C) Review writing based Project Work.

Experimental Project Work and Field Based Project Work:

Student can carry out Experimental / Field Based Project Work on a related research topic of the subject /course. It must be an original work and must indicate some degree of experimental work / Field work. On

the basis of this work, student must submit the Project Report (typed and properly bound) in two copies at least one month prior to commencement of the final Practical / lab Examination of Semester IV. The project report shall comprise of Introduction, Material and Methods, Results, Discussion, Summary, Conclusion and, References along with the declaration by the candidate that the work is original and not submitted to any University or Organization for award of the degree and certificate by the supervisor and forwarded through Head / Course-coordinator / Director of the Department / Centre or the Principal of the College.

Review writing based Project Work.

Student can carry out review writing Based Project Work on a related topic of the subject / course. It must be a review of topic based on research publications. Student shall refer peer reviewed original research publications and based on findings, write a summary of the same. The pattern of review writing shall be based on reputed reviews published in a standard, peer reviewed journals. On the basis of this work, student must submit the Project Report (typed and properly bound) in two copies at least one month prior to commencement of the final Practical / lab Examination of Semester IV. The project report shall comprise of Abstract, Introduction, detailed review, Discussion, Summary, Conclusion and, References along with the declaration by the candidate that the work is original and not submitted to any University or Organization for award of the degree and certificate by the supervisor and forwarded through Head / Course-coordinator / Director of the Department / Centre or the Principal of the College.

*The supervisors for the Project Work shall be from the following.

A person shall be an approved faculty member in the relevant subject. OR

Scientists of National Laboratories / Regional Research Laboratories/ Experts from R&D in Industry who are approved by competent authority in such facilities by the Union Government / the State Government / Gondwana University / Other Universities recognized by UGC.

The Project Work will carry total 100 marks and will be evaluated by both external and internal examiner in the respective Department / Center / Affiliated College.

The examiners will evaluate the Project Work/Dissertation taking into account the coverage of subject matter, arrangement and presentation, references, etc.

For written Project	40	Marks – Evaluated jointly by External & Internal
work		examiner
Oral Presentation	20	Marks – Evaluated jointly by External & Internal
		examiner
For Viva-Voce	20	Marks – Evaluated by External examiner
Internal Assessment	20	Marks – Evaluated by Internal examiner
Total	100	

Seminar

Guidelines for Students, Supervisors and Examiners

In each semester, the student will have to deliver a seminar on any topic relevant to the syllabus / subject encompassing the recent trends and development in that field / subject. The topic of the seminar will be decided at the beginning of each semester in consultation with the supervising teachers. The student has to deliver the seminar which will be followed by discussion. The seminar will be open to all the teachers of the department, invitees, and students.

The students should submit the seminar report typed and properly bound in two copies to the head of the department. The said shall be evaluated by the concerned supervisor / head of the department. The marks of the seminar shall be forwarded to the university within due period through head of the Department. The record of the seminar should be preserved till the declaration of the final result.

Internal Assessment:

- 1. The internal assessment marks shall be awarded by the concerned teacher.
- 2. The internal assessment marks shall be sent to the University after the Assessment in the prescribed format.
- 3. For the purpose of internal assessment, the University Department / College shall conduct any three assignments described below. Best two scores of a student in these tests shall be considered to obtain

the internal assessment score of that student.

- 4. If the student does not appear for the Practical Exam, he shall be declared failed in Practical Examination irrespective of marks obtained in Internal Practical Assessment. However, the Internal Practical Assessment marks will be carried forward for his next supplementary Practical Exam.
- 5. General guidelines for Internal Assessment are:
 - a) The internal assessment marks assigned to each theory paper as mentioned in Appendix 1 shall be awarded on the basis of assignments like class test, attendance, home assignments, study tour, industrial visits, visit to educational institutions and research organizations, field work, group discussions or any other innovative practice / activity.
 - b) There shall be three assignments (as described above) per course.
 - c) There shall be no separate /extra allotment of work load to the teacher concerned. He/ She shall conduct the Internal assessment activity during the regular teaching days / periods as a part of regular teaching activity.
 - d) The concerned teacher / department / college shall have to keep the record of all the above activities until six months after the declaration of the results of that semester.
 - e) **At the beginning of each semester, every teacher /department/college shall inform his/her students unambiguously the method he / she proposes to adopt and the scheme of marking for internal assessment. (Prescribed in syllabus of respective Subjects).
 - f) Teacher shall announce the schedule of activity for internal assessment in advance in consultation with HOD / Principal.

**To be included in syllabus by BOS.

Practical Examination

- 1. Each practical carries 100 marks. The scheme of marking shall be as per given in the syllabi of respective subjects.
- 2. Practical performance shall be jointly evaluated by the External and Internal Examiner. In case of discrepancy, the External Examiner's decision shall be final.
- 3. Duration of practical examination will be as per given in the syllabi of respective subjects.

The Practical Record of every student shall carry a certificate as shown below, duly signed by the teacher-in-charge and the Head of the Department. If the student fails to submit his / her certified Practical Record duly signed by the Teacher-In-Charge and the Head of the Department, he / she shall not be allowed to appear for the Practical Examination and no Marks shall be allotted to the student.

The certificate template shall be as follows: 4.

CERTIFICATE

Name of the college / institution ______ Name of the Department: ______ This is to certify that this Practical Record contains the bonafide record of the Practical work of Shri / Shrimati / Kumari ______ of M. Sc. _____

_____ Semester _____ during the academic year _____. The candidate has satisfactorily completed the experiments prescribed by Gondwana University Gadchiroli for the subject _____

Dated ___ / ___ / ____

Signature of the teacher who taught the examinee Head of the Department 1. 2. General Rules and Regulations regarding pattern of question paper for the semester end examination: A) Pattern of Question Paper

- 1. There will be four units in each paper.
- 2. Maximum marks of each theory paper will be 80.
- 3. Question paper will consist of five questions, each of 16 marks.
- 4. Four questions will be on four units with internal choice (One question on each unit).
- Fifth question will be compulsory with questions from each of the four units having equal weightage and 5. there will be no internal choice.

Index:

Sem. No.	Paper No.	Paper Title
	Ι	Cell Biology
	II	Microbiology
	III	Biophysical techniques
Ι	IV	Molecular Biology
		Practical Based on Paper I & II
		Practical Based on Paper III & IV
		Seminar
	Ι	Enzymology
	II	Immunology and Immunological techniques
	III	Molecular Biology and Bioinformatics
II	IV	Industrial Biotechnology
		Practical Based on Paper I & II
		Practical Based on Paper III & IV
		Seminar

Semester-I Paper-I Cell Biology

Course	PSMB10	Topic/Title	Credi
Code	1		t
	Unit-I	Ultra structure and function of cell and cell organelles	
		A. Discovery of cell	
		B. General structure of plant cell	
		C. Structure of animal cell and types	
		D. Plasma membrane: fluid mosaic model	
		E. Cell walls: archae, bacteria, plant cell.	
		F. Mitochondria	
		G. Chloroplasts	
		H. Golgi complex, endoplasmic reticulum, lysosomes, plastids	
	Unit-II	Cell cycle and Cell signaling	
		A. Cell cycle: cytological events in mitosis and meiosis, Go-G1	
		transition. chromosome condensation, regulation of cell division	
PSBIT-101		B. Cell signaling: signal transduction in animal and plant cell	04
		(tyrosine kinase, light induced signaling, programmed cell death-	
		apoptosis	
		C. Cytoskeleton and cell locomotion	
	Unit-III	Plant and Animal Tissue	
		A. Structure and function of	
		i. Meristematic tissue and permanent tissue.	
		ii. Parenchyma, collenchymas, sclerenchyma	
		iii. Stomata, xylem, phloem	
		B. Structure and function of muscle tissue, nervous tissue,	
		connective tissue	
		C. Cell junction (gap junction), cell adhesion, cell-cell interaction	
	Unit-IV	Chemistry of Cell	
		A. Chemistry of carbohydrates: energy storage molecules –	
		starch, glycogen. building blocks – cellulose, chitin.	
		B. Chemistry of lipids : triglycerides, phospholipids, glycolipids,	
		sphingolipids, sterols, lipoproteins	
		C. Proteins: amino acids and peptides. primary, secondary, and	
		tertiary structures. collagen structure. Ramachandran plot.	
		models of protein folding, roles of chaperones and chaperonins.	
		D. Nucleic acids: structure of DNA and RNA: A, B, and Z forms of	
		DNA, Topological structure of DNA.	

References:

1. Cell Biology Genetics Mole Biology Evolution And Ecology, P. S. Verma, 2005, S. Chand

- 2. Biotechnology (E.H.), B. D. Singh, 2008, Kalyani Publication
- 3. Cell And Molecular Biology Gerald Karp, 2007. John Willey And Son Pvt. Ltd.
- 4. Cell Biology, C.B. Powar, 2005, Himalaya Publishing House.
- 5. Cell, B. Lewin, 2007, Jones And Bartlett Publisher, London.
- 6. Cytology, Verma And Argawal, 2005, S. Chand, Newdelhi

Semester-I Paper-II Microbiology

Course Code	PSMB102	Topic/Title	Credit
	Unit-I	History and Development of Microbiology	
		A. Contribution of Antony Van Leeuwenhoek, Louis Pasteur,	
		Robert Koch, Edward Jenner, Joseph Lister	
		B. Classification of microorganism, Whittaker classification,	
		Bergey's System of bacterial classification (2nd and 9th edition).	
		C. Concept of prokaryotes and eukaryotes, comparision	
		i. Structure of typical bacterial cell	
		ii. Structure and function of bacterial cell organelles – capsule,	
		slime layer, flagella, pili,	
		iii. Endospore, nucleoid	
	Unit-II	Microscopy and Staining	
		A. Compound microscopy- numerical apperture and its	
		importance, resolving power, oil immersion objective and their	
		significance.	
		i. Principles and application of dark field, phase contrast,	
		fluorescent microscopy,	
		ii. Electron microscopy- principle, working, application (TEM and	
		SEM)	
		iii. Atomic force microscopy, confocal microscopy	
		B. Basic concept of dye and stain.	
PSBIT-102		i. Types of stains- acidic, basic and neutral Stains.	
F3D11-102		ii. Differential staining- Gram staining.	04
		iii. Procedure and mechanism of endospore staining, capsule	04
		staining, negative staining,	
	Unit-III	Microbial Physiology	
		A. Nutrition: basic nutritional requirements, nutritional	
		classification, types of biological complex media	
		B. Reproduction and growth: concept of growth and	
		reproduction, binary fission, growth curve, measurement of	
		growth	
		C. Microbial control: definition of sterilization, disinfection,	
		antiseptics, germicides	
		D. Methods of sterilization physical and chemical methods,	
		dynamics of sterilization,	
	Unit-IV	Microbial Diversity	
		A. Algae: general characteristics, reproduction and Applications	
		in biotechnology.	
		B. Fungi (yeast and mould): General characteristics, reproduction	
		and applications in biotechnology.	
		C. Viruses: general characters and structure	
		D. Life cycles of virus : lytic and lysogeny (lambda phage)	
		E. Viroids and prions	

References

Microbial Physiology and Metabolism by Caldwell D.R. 1995Brown Publishers.
 Microbial Physiology by Moat A.G. and Foster J. W. 1999. Wiley.

3. Prokaryotic Development by Brun. Y.V. and Shimkets L.J. 2000. ASM Press.

4. Advances in Microbial Physiology. Volumes. Edited by By A.H. Rose. Academic Press, New York.

5. Applied Microbial Physiology by Rhodes.

6. Biosynthesis by Smith.

- 7. The Bacteria. Volumes by I.C. Gunsalus and Rogery Stanier, Acadenic Press.
- 8. Microbial Physiology by Benjam.
- 9. Metabolic Pathways .By:-David M.Greenberg.
- 10. Dawes, E. A. Microbial Energetics, New York: Chapman.
- 11. White, D. The Physiology and Biochemistry of Prokaryotes, Oxford University Press,
- 12. History of Microbiology and Microbiological Methods by A.B. Solunke, V.S. Hamde, P.R. Thorat,
- R.S. Awasthi, Atharva Publishers Jalgaon.

Semester-I Paper-III Biophysical Techniques

Course	PSMB103	Topic/Title	Credit
Code			
	Unit-I	Biophysical techniques - I	
		A. Chromatography : types and principles of partition,	
		adsorption, gel filtration, affinity, ion exchange, paper	
		chromatography. brief concept of GLC and HPLC.	
		B. Electrophoresis: concept and principles of electrophoresis, gel	
		electrophoresis (agarose, PAGE, SDS-PAGE), basic principles of	
		disc gel electrophoresis, gradient electrophoresis, pulsed field gel	
		electrophoresis, paper electrophoresis.	
		C. Viscosity: basic principle, determination of molecular weight of	
		biopolymer through viscosity	
	Unit-II	Biophysical techniques – II	
		A. Centrifugation: basic principles, mathematics and theory (RCF,	
PSBIT-		sedimentation coefficient etc)	04
103		B. Types of centrifuge: microcentrifuge, high speed &	
		ultracentrifuges.	
		C. Preparative centrifugation: differential and density gradient	
		centrifugation, applications (isolation of cell components).	
		D. Analytical centrifugation: determination of molecular weight	
		by sedimentation velocity	
	Unit-III	Biophysical techniques- III	
		A. Spectrophotometry: nature of light, Lambert and Beer's law.	
		B. Principle working and application of spectrophotometry- UV-	
		visible, infrared, fluorescence	
		C. NMR (Nuclear Magnetic Resonance)	
		D. Basic introduction to Raman and Mass spectrophotometry	
	Unit-IV	Radioactivity	
		A. Radioactive and stable isotopes, pattern and rate of radioactive	
		decay, units of radioactivity.	
		B. Measurement of radioactivity: basic principle, instrumentation	
		and technique of	
		i. Geiger-Muller counter.	
		ii. Solid scintillation counter	
l		iii. Liquid scintillation counter	

 C. Brief idea of Cerenkov radiation, autoradiography. D. Measurement of stable isotopes: falling drop method and Mass spectrometry. E. Applications of isotopes in biochemistry- principles of tracer techniques, its advantages and limitations, distribution studies, 	
metabolic studies, clinical application.	

References:

1. Methods of General and Molecular Bacteriology, 1993. Edited by Philip. Gerhardt, ASM Publications.

2. Biophysical Chemistry VOL:I,II,III; The conformation of biological macromolecules. By; Cantor and Schimmel. Hans-Peter schmauder,Michael schweizer,Lilian M.Schweizer.

3. Biophysical Chemistry By: Upadhaya Upadhyaya Nath.

4. Principles and Techniques of Practical Biochemistry by K. Wilson and J. Walker, Cambridge University Press

5. Morrison – Physical Biochemistry (Oxford).

6. Hames, B.D. and Rickwood, D. Gel Electrophoresis A practical Approach, Oxford University Press, New York.

7. Cotterill, R.M J. Biophysics An Introduction, John Wilely and Sans England.

8. Nolting, B. Methods in Modern Biophysics II Ed. Springer, Germany.

9. Narayana .P. Essentials of Biophysics New Age International Pub. New Delhi.

10. Keeler, J. Understanding NMR spectroscopy. John Wiely and Sons England.

11. Holler, F.J.,D.A. Skoog and S.R. Crouch, Principles of Instrumental Analysis IV ED.Thomson, Brooks/Cole Pub. US

Semester-I Paper-IV Molecular Biology

Course	PSMB104	Topic/Title	Credi
Code			t
	Unit-I	Replication, Mutations and Repair	
		A. Messelson and Stahl Experiment- semi-conservation	
		replication.	
		B. DNA Replication: in prokaryotic (detail). comparison between	
		prokaryotic and eukaryotic DNA replication	
		C. Mechanisms of DNA replication, enzymes and accessory	
		proteins involved in DNA replication.	
		D. Gene mutations: types of mutations. mutagens- chemical and	
		physical mutagens	
		E. DNA repair: direct repair, Ada protein, NER, BER, MMR, SOS	
		repair, transcription-repair coupling, repair of double-strand	
		breaks.	
PSBIT-	Unit-II	Transcription Post transcriptional Modifications of RNA	04
104		A. Prokaryotic transcription: RNA polymerase holoenzyme and	
		apoenzyme, different sigma factors.	
		B. Details of transcription initiation, elongation, termination.	
		C. Transcription regulation (lac operon, ara operon, trp operon,	
		negative autogenous control).	
		D. Eukaryotic transcription: three types of RNA polymerases.	
		promoter of RNA polymerase II.	

	E. Packaging of chromosomes and its relation to transcription	
	regulation.	ľ
	F. Modifications of RNA: 5' cap formation, polyadenylation,	
	splicing of nuclear pre-mRNA, mRNA stability.	
Unit-III	Protein biosynthesis	
onic m	A. Genetic code: characteristics, deciphering the code.	
	B. Protein biosynthesis: prokaryotic and eukaryotic translation,	
	the translational machinery, mechanism of prokaryotic and	
	eukaryotic translation initiation, elongation and termination.	
	C. Post translation modification of protein.	
	D. Couple transcription and translation	
Unit-IV	Genes: Molecular structure of prokaryote and eukaryote	
	genes.	
	A. Concept of gene- introns, exons, cistron, recon, split	
	Genes, spacers, C-value paradox, idea of coy curve.	
	B. Bacterial genetic system: recombination (transformation,	
	conjugation, transduction and transposition) plasmids, salient	
	features of the <i>E.coli</i> genetic map.	
	C. Extra chromosomal inheritance: maternal effects,	
	D. Types of genes- regulatory gene, structural gene,	
	D. Types of genes- regulatory gene, structural gene,	

References:

1. Cell Biology Genetics Mole Biology Evolution And Ecology, P. S. Verma, 2005, S. Chand

2. Biotechnology (E.H.), B. D. Singh, 2008, Kalyani Publication

3. Cell And Molecular Biology Gerald Karp, 2007. John Willey And Son Pvt. Ltd.

4. Cell Biology, C.B. Powar, 2005, Himalaya Publishing House.

5. Cell, B. Lewin, 2007, Jones And Bartlett Publisher, London.

6. Cytology, Verma And Argawal, 2005, S. Chand, Newdelhi

PRACTICAL PAPER Based on Theory I & II PRACTICAL-I

Practical I (CELLULAR & MICROBIAL TECHNIQUES) Compulsory Practicals

1. Isolation of mitochondria.

2. Isolation of Bacteria, fungi, Actinomycetes and Yeast.

3. Assay of viruses

4. Cell motility and flagella staining.

5. Cell types of plants- maceration of various tissue explants and identification of xylem, trachied, stomata, root hair, etc.

6. Isolation of neutrophils and demonstration of phagocytosis.

7. Determination of osmotic fragility of RBC membrane.

8. Isolation of chlorophyll and xanthophylls from spinach leaves.

9. Study of meiosis and mitosis.

10. Histological study of tissues by Microtomy.

11. Cleanliness, media preparation, sterilization, culturing methods, dilution techniques.

12. Staining techniques in microbiology; simple staining, gram staining, spore staining, capsule

staining, flagella staining.

11. Isolation of pure culture by different techniques.

12. Replica plating technique.

PRACTICAL PAPER

Based on Theory III & IV

PRACTICAL-II

1. Separation of proteins by ion exchange chromatography

2. Separation of lipids by thin layer chromatography

3. Polyacrylamide gel electrophoresis: SDS-PAGE of proteins.

4.Estimation of proteins by Lowry's and Bradford method.

5.Qualitative analysis of Carbohydrate, protein, lipid and nucleic acids.

6. Estimation of protein by E280/E260 method

7.Introduction to measurements: balance and pipefitting, preparation of solutions of given molarity and normality.

8.. Measurement of pH: buffering capacity, to determine pKa value and hence the dissociation constant of a given acid using pH meter.

9.. Colorimetry: To determine the dissociation constant of a given indicator colorimetrically and to prepare buffer solutions in the pH range 2.2 to 8.0

10. Colorimetry: Assay of DNA by diphenylamine method.

11. Colorimetry: Assay of RNA by orcinol method.

12. Potentiometry: To determine redox potential of Fe++ and Fe+++.

13. Conductometry: to determine cell constant of 0.1 M KCl.

14. Conductometry: Titration of strong acid *vs* strong base, to find out equivalent conductance of salt formed.

15. Viscometry: To determine radius of glycerol molecule.

16. Viscometry: To determine molecular weight of protein and DNA.

17. Viscometry: To determine changes in the conformation of bovine serum albumin by viscosity measurements, effect of pH on conformation of BSA.

SEMESTER II

Semester-II Paper-I Enzymology

Course Code	PSMB105	Topic/Title	Credit
	Unit-I	General Enzymology, Specificity and its Kinetics	
		A. Enzyme classification and nomenclature.	
		B. Concept of holoenzymes, coenzymes, apoenzyme, Substrate,	
		Inhibitor, Activator, Modulators etc.	
		C. Commercial application of enzymes (food, industry, Research,	
		Pharmaceutical field) Enzyme immobilization.	
		D. Substrate Specificity- Lock and Key model, Induced fit model.	
		E. Enzyme kinetics: Michaelis-Menten equation (derivation,	
		significance and transformation).	
		F. Lineweaver-Burk equation.	
		G. Effect of pH, Temperature, Substrate Concentration, enzyme	
		Concentration,	
PSBIT-	Unit-II	Enzyme inhibition	04
105		A. Enzyme inhibition and types of inhibitors.	
		B. Reversible and Irreversible Inhibitors, competitive,	
		noncompetitive, uncompetitive inhibitors.	
		C. Enzyme Inhibition Kinetics.	
		D. Concept of multienzyme complexes: fatty acid synthase and	
		dehydrogenase complexes.	
	Unit-III	Mechanism of enzyme action	
		A. Models enzyme action, catalysis by proximity effect, acid-base	
		catalysis, covalent catalysis, metal ion catalysis, nucleophilic and	
		electrophilic catalysis, electrostatic interaction,	
		B. Unit of Enzyme activity, Enzyme assay.	
		C. Purification and Isolation of enzymes	
		D. Membrane bound enzymes and Isoenzymes	
	Unit-IV	Enzyme Regulation	
		A. Concept of enzyme regulation: Allosteric (example ATCase),	
		Proteolytic Activation (example zymogen structure)	
		B. Types of Allosteric regulation: homotropic allosteric	
		modulator, heterotropic allosteric modulator	
		C. Ping Pong mechanism.	
		D. Chemical modification and calmodulin mediated regulation.	
		Isoenzymes. Lysozymes	

Semester-II

Paper-II Immunology and Immunological Techniques

Course Code	PSMB106	Topic/Title	Credi t
	Unit-I	<i>History, Cells and Organs of immune system.</i> A. Concept of Innate immunity, Acquired immunity B. Cells involved in immune response- lymphocytes, granulocytes and agranulocytes.	

	1		
		C. Primary lymphoid organs (Bone marrow, Thymus,)	
		D. Secondary lymphoid organs (MALT, GALT, Lymph Nodes,	
		Spleen,)	
		E. Antigen, Antigenicity	
		F. Immunoglobulins: structure of Immunoglobulins and classes of	
		Immunoglobulins.	
	Unit-II	Adaptive and Cell mediated immune response	
		A. Humoral immune system- Main pathway of complement	
PSBIT-		system, primary response, secondary response, B-cell, BCR,	04
106		Activation of B Cells	
		B. MHC-I, MHC-II molecules, antigen presentation.	
		C. T-cell development, T Cell Receptor (TCR)- $\alpha\beta$ T cells, $\gamma\delta$ T	
		cells, Structure of TCR, T-cell activation, Apoptosis in T cells.	
		D. Humoral Immunity, NK cell mediated immunity, mechanism of	
		cell mediated immunity.	
		E. Cell-cell cooperation, role of cytokines- Cytokine receptors,	
	Unit-III	Immunological Techniques	
	onit in	Immunological techniques: Ag-Ab reactions, Lattice theory, Zone	
		phenomenon, techniques based on precipitation, agglutination,	
		immunodiffusion, RIA, ELISA, hybridoma Technology, CFT	
		(complement fixation test)	
	Unit-IV	Hypersensitivity and Vaccination	
	0111-14	B. General feature of Hypersensitivity, types of Hypersensitivity.	
		C. Autoimmune Diseases: Addison's Disease, Grave's Disease.	
		D. Vaccination: Discovery, Principle and Significance of vaccination.	
		E. Concept of autoimmunity and immunological tolerance.	

Semester-II Paper-III Molecular Biology and Bioinformatics

Course	PSMB107	Topic/Title	Credit
Code			
	Unit-I	Recombination, Chromosome Transfer and Genome Mapping	
		A. Homologous recombination: Holiday junction.	
		B. FLP/FRT and Cre/Lox recombination, RecA.	
		C. Molecular mapping of genome: Genetic and physical maps,	
		choice of mapping population,	
		D. southern and fluorescence in situ hybridization for genome	
		analysis,	
		E. Molecular markers- RFLP map, RAPD, and AFLP analysis,	
		linked analysis, application of molecular markers in forensic,	
		disease prognosis, genetic counseling, pedigree etc. STS,	
		microsatellite.	
	Unit-II	Antisense, Ribozymes and Epigenetics	
PSBIT-		A. Antisense and ribozyme technology: Molecular mechanism of	04
107		antisense molecule, biochemistry of ribozyme, hammerhead	
		ribozymes, applications of antisense and ribozyme technologies.	
		B. Epigenetics: chromatin marking systems, Direct chemical	
		modification of DNA, Basic concepts of RNAi.	

Unit-III	Cancer Biology
	A. Characteristics of Cancer cell, Methods to study cancer.
	B. Angiogenesis, positive and negative factors affecting
	angiogenesis. Metastatsis, biochemical parameters acquired by
	metastatic cells.
	C. DNA Viruses and cancer: Polyoma virus, SV40, adenovirus
	D. Genetics of Cancer: Oncogenes (ras, erb-B, abl), suppressor
	genes (p53, Rb).
	E. Cancer stem cells.
Unit-IV	Bioinformatics
	A. Computer concept: computer organization, hardware,
	software, operating system (windows, unix, brief list of computer
	languages).
	B. Concept of networking: internet, internet concepts, web
	browsing, public domain resources in biology.
	C. Concept of database management: brief idea of data types,
	data structures, searching, sorting, designing a database,
	genomic, proteomic, and metabolic pathways databases.
	D. Computer analysis of genetic sequences: general concepts
	of sequence analysis, identification of functional sequences,
	homology, brief idea of BLAST, ENTREZ, and PuBMed.
	E. Bioinformatics tools in drug design.

Semester-II Paper-IV Industrial Biotechnology

Course	PSMB108	Topic/Title	Credi
Code			t
	Unit-I	Bioreactor technology-I	
		A. Definition of fermentation	
		B. Concept of Industrial Fermentation, Types of fermentation	
		(Industrial Types)	
		C. General layout of fermentation unit	
		D. Design of fermenter- Geometry of fermenter	
		E. Types of fermenter- Batch and continuous, airlift, fluidized bed,	
		loop reactors, rotatory disc reactors, fed batch reactors,	
	Unit-II	Bioreactor technology-II	
		A. Aeration and Agitation, Heat and mass transfer, KLa value,	
		B. Rheology, Power number, Reynold number and other factors,	
		types of microorganisms, medium composition, antifoaming	
PSBIT-		agents, Product accumulation	04
108		C. Up-stream processes: Medium composition, Raw materials and	
		sterilization	
		D. Inocullum buildup, Scale up	
		E. Substrate utilization, oxygen sag, yield coefficient	

Unit-III	Downstream processing
	A. Filtration, ultrafiltration, Bioseparation, membrane filtration,
	centrifugation, sedimentation, flocculation
	B. Solvent extraction, counter current extraction
	C. Chromatographic techniques- ion exchange, affinity, gel
	filtration, adsorption
	D. Crystallization, reverse osmosis, drying
	E. Quality control Testing- Antibiotics
	F. Packaging and Storage
Unit-IV	Industrial Production and Immobilization
	A. Industrial Production of amylase, penicillin ethanol, pigment-
	beta carotene, vitamin B12 and Gibberellin
	B. Biosensor
	C. Immobilized systems- adsorption, covalent bonding,
	entrapment, encapsulation, cross linking, diffusion
	characteristics, effective factors,
	instability factors, deactivation rates
	D. Immobilization of enzyme, lyophilization and crystallization of
	products

PRACTICAL PAPER Based on Theory I & II PRACTICAL-I

1. Western blotting.

2. Determination of activity of invertase from immobilized cells of *Saccharomyces cerevisiae*

3. Assay of activity of LDH.

4. Purification of immunoglobulins, qualitative assessment.

5. Demonstration of immunochemical reactions (blood group, , pregnancy,)

6. Demonstration of ELISA

7. Demonstration of VDRL

8. Widal Test

9. Blood film preparation and identification of cells.

10. Ouchterlony immunodiffusion,

11. Determination of albumin by radial immunodiffusion.

12. Assay of activity of beta-galactosidase

13. Assay of activity of acid phosphatase,

14. Determination of activity in presence of activators.

15. Determination of activity in presence of inhibitors.

16. Enzyme purification by crystallization - urease.

17. Subcellular fractionation and assay of marker enzymes.

PRACTICAL PAPER Based on Theory III & IV PRACTICAL-II

1. Production of microbial products (Alcohol/Antibiotic) in bioreactors/fermenter and determine yield potential.

2. Separation of polyA RNA on oligo dT column.

3. Southern blotting.

4. Determination of rheological constant.

5. Determination of oxygen transfer rate, volumetric transfer coefficient.

6. Isolation of genomic DNA.

7. Isolation of plasmid DNA.

8. Isolation of RNA.

9. Endonuclease digestion of DNA and analysis of DNA fragments by agarose electrophoresis.

10. Restriction fragment length polymorphism.

11. Ames test.

- 12. Computer aided visualization of amino acid sequence of protein and its 3D structure.
- 13. Retrieving metabolic pathway using internet.
- 14. Homology searching using BLAST.
- 15. Computer aided survey of scientific literature.

16.Immobilization of cell/enzyme.

TEXT BOOKS & REFERENCES FOR THEORY AND PRACTICALS:

1. Genetics, P.J. Russel, Benjamin/Cummings.

2. Principles Of Genetics, E.J. Gardner, 2006, John W.H. Sons Inc.

3. Principles Of Genetics, D.P. Suntan & M.J. Simmons, 2005, John Wiley & Sons Inc.

4. Molecular Biology Of Gene (Fifth Edition) J.D. Watson, A.M. Weiner & N.H. Hopkins, Addison-Wesly Publishing.

5. Elementary Biochemistry, J.L.Jain, Sanjai Jain, 2007, S.Chand

6. Fundamental Of Biochemistry, J.L.Jain, Sanjai Jain, 2008, S.Chand

7. Selected Question With Answer In Biochemistry, Amit Krishna De, 1997, S.Chand

8. Qualitative Test And Quantitative Procedures In Biochemistry, Pushpa Sundararaj, Anupa Sidhu, 1995, S.Chand

9. Analysis Of Amino Acid Of Proteins And Nucleic Acid, Butterworth,Heinemanm, 2004, Open University Publ

10. Biochemistry, U.Satyanarayana, 2009, Books And Allied 11. Biochemistry, C.B. Powar, 2006, Himalaya

12. Principle Of Biochemistry, L. Nelson And Cox, 2008, Replika Press 13. Genetics, Monroe W.Strickberger, 2008, Pearson Eud.

14. Biochemistry- U.Satyanarayana, 2009, Books And Allied

- 15. Biochemistry- A.C. Deb, 1998, New Central Book Agency, Calcutta.
- 16. Biochemistry- Stryer, 6th Edi., Freeman Publication.
- 17. Biochemistry- Voet And Voet, 2005, John Wiley & Sons, Inc..
- 18. Biophysical Chemistry- Upadyay And Nath, 2007, Himalaya Publication.
- 19. Genetics- C.B. Pawar, 2005, S. Chand, Newdelhi.
- 20. Genetics- Strictberger, 3rd Edi., Phi Learning Pvt. Ltd. Newdelhi.
- 21. Biochemistry- Pawar And Chatwal, 2005. Himalaya Publication House.
- 22. Biochemistry Practical Manual, Jairaman, 2008.

23. Experiments In Microbiology, Plant Pathology And Biotechnology, K.R. Aneja, 2003, New Age Int.Pvt.Ltd.

- 24. Standard Methods Of Biochemical Analysis, S. R. Thimmaiah.
- 25. General Enzymology, Kulkarni & Deshpande, 2005, Himalaya Publication
- 26. Fermentation Technology, Whiteker,
- 27. Indutrial Biotechnology, Thakur
- 28. Bioreacter Design And Product Yield, Biotol
- 29. Indutrial Microbiology, P. K. Shivakumar, 2010, S. Chand