TEACHING AND EXAMINATION SCHEME (SEMESTER PATTERN CHOICE BASED CREDIT SYSTEM)

PROGRAM	:
PROGRAM CODE	:
FACULTY	:
DURATION	:

MASTER OF TECHNOLOGY IN COMPUTER SCIENCE & ENGINEERING

PCS ENGINEERING & TECHNOLOGY

: TWO YEARS

I- SEMESTER

Unique	Course	Subject	Те	aching	Schem	e	Examination Scheme									
Subject	type		Hour	s per we	eek	No.			Theor	'Y				Prac	ctical	
Code			L	Field	Ρ	of	Dura	Max	Ma	IX.	Tot	Mi	Ма	М	Tot	Mi
(USC)				Wor		Cred	tion	.Mar	Ma	rks	al	n.	х.	ах	al	n.
				k/		its	of	ks				Ра	Ма	•		Pas
				Assi			Pape		Sessiona			ssi	rks	Μ		sin
				gnm			r		ocooloniai			ng		ar		g
				ent/			(Hrs.					м		ks		Ma
				luto)					ar				rĸs
				[Idl								ĸs				
								ESE	MS	IE			тw	PE		
									E					E		
PCSS11	С	Advanced	3	2	-	3+1	3	70	10	20	100	50	-	-	-	-
		Computer														
		Architecture														
PCSS12	С	Advances in	3	2	-	3+1	3	70	10	20	100	50	-	-	-	-
		Operating System														
D00012		Design	2			2.4	2	70	10	20	400	50				
PCSS13	C	Object Oriented	3	2	-	3+1	3	70	10	20	100	50	-	-	-	-
		Sollware														
PCSS14x	D	Flective – I	3	2	_	3+1	3	70	10	20	100	50	-	-	-	-
1 0001 11	_ r		3			3.1			10			50				
Li	aboratorie	es/ Practical				[[1							
PCSS15	C	ComputerSystem	-	-	2	1	-	-	-	-	-	-	50	50	100	50
	C	Lab – I														
PCSS16	E	Seminar	-	-	2	1							50	-	50	25
		TOTAL	12	08	4	18	-		40	D			150			
				-												
		SEMESTE	R TOTAL		24	1	18	3				550				
	Electiv	e – I (x) : (A) Da	ta Warel	housing	and Da	ata Mini	ng	(B)	In	forma	ition Re	etrieva	al			

(C) Soft Computing

TEACHING AND EXAMINATION SCHEME (SEMESTERPATTERN CHOICE BASED CREDIT SYSTEM)

PROGRAM	:	MASTER OF TECHNOLOGY IN COMPUTER SCIENCE & ENGINEERING
PROGRAM CODE	:	PCS
FACULTY	:	ENGINEERING & TECHNOLOGY
DURATION	:	TWO YEARS

II – SEMESTER

Uniqu	Cour	Subject	Teaching Scheme							E	xamina	tion Sch	neme			
е	se		Но	ours per w	eek	No.			Th	neory				Prac	tical	
Subje	type		L	Field	Ρ	of	Dur	М	M	ax.	Tota	Min.	Ma	Ma	Tota	Mi
ct				Work/		Cred	atio	ах	Ma	rks	I.	Pass	х.	х.	I.	n.
Code				Assign		its	n of	•				ing	Ma	Ma		Ра
(USC)				ment/			Рар	м	Sec	sion		Mar	rks	rks		ssi
				Tutori			er	ar	2003	al		ks				ng
				al			(Hrs	ks								Ma
							•)									rĸs
								FS	м	IE			T\\/	DEE		
								E	SE							
PCSS2	C	Advances in	3	2	-	3+1	3	70	10	20	100	50	-	-	-	-
1		Algorithms														
PCSS2	С	Advanced	3	2	-	3+1	3	70	10	20	100	50	-	-	-	-
2		Databases														
PCSS2	С	Advanced	3	2	-	3+1	3	70	10	20	100	50	-	-	-	-
3		Digital Image														
		Processing														
PCSS2	P	Elective – II	3	2	-	3+1	3	70	10	20	100	50	-	-	-	-
4x																
Lab			1									1				
	oratorie	S/ Practical	<u> </u>		2	1							E0	50	100	50
5	Ľ	System Lab -	-	-	2	1	-	- - - - - 50		50	100	50				
5																
PCSS2	F	Seminar	-	-	2	1							50	-	50	25
6	L .					_										
		TOTAL	1	08	4	18	-	- 400				150				
			2													
			1													
	SEN	MESTER TOTAL		24		18						550				

Elective – II (x) :(A) Pattern Recognition (B) Statistical Machine Learning (C) Network Security & Cryptography

TEACHING AND EXAMINATION SCHEME (SEMESTERPATTERN CHOICE BASED CREDIT SYSTEM)

PROGRAM	:	MASTER OF TECHNOLOGY IN COMPUTER SCIENCE & ENGINEERING
PROGRAM CODE	:	PCS
FACULTY	:	ENGINEERING & TECHNOLOGY
DURATION	:	TWO YEARS

III- SEMESTER

Uniqu	Cour	Subject	Teaching	aching Scheme Examination Scheme																																						
е	se		Но	urs per we	ek	No.			The	ory				Practi	cal																											
Subjec t Code (USC)	type		L	Field Work/ Assign ment/ Tutoria I	Ρ	of Cred its	Durati on of Paper (Hrs.)	Ma x. Ma rks	N M Sess	Max. Marks Sessional		Max. Marks Sessional		Marks Marks		Max. Marks Sessional		Max. Marks Sessional		Max. Marks Sessional		Marks Sessional		Marks		Marks Sessional		Marks Sessional		Marks Sessional		Max. Marks Sessional		Max. Marks Sessional		Marks Sessional		Mi n. Pa ssi ng M ark	Max Mar ks	Max. Mark s	Tot al	Mi n. Pas sin g Ma rks
								ES E	M IE SE			S	TW	PEE																												
PCSS3 1x	Р	Elective-III	3	2	-	3+1	3	70	10	20	100	50																														
PCSS3 2	E	Study of Soft Computing and Data Analysis Tools	-	8	-	5				100	100	50	-	-	-	-																										
PCSS3 3	E	Grand Seminar	-	6	-	4				100	100	50	-	-	-	-																										
Lab	oratori	es/ Practical																																								
PCSS3 E Pre- 4 Dissertation		-	8	-	5							150	-	150	75																											
		TOTAL	-	24	-	18	- 300					150																														
		SEMESTER TOTAL	24 18				450																																			

Elective – III (x) :(A)Wireless Sensor Networks (B)VLSI Technology (D) Total Quality Systems & Engineering (C) CNC & Robotics

TEACHING AND EXAMINATION SCHEME (SEMESTERPATTERN CHOICE BASED CREDIT SYSTEM)

PROGRAM	:	MASTER OF TECHNOLOGY IN COMPUTER SCIENCE & ENGINEERING
PROGRAM CODE	:	PCS
FACULTY	:	ENGINEERING & TECHNOLOGY
DURATION	:	TWO YEARS

IV– SEMESTER	
---------------------	--

Uniqu	Cour	Subject		Teaching S	Examination Scheme												
е	se		Но	ours per we	ek	No.		Theory						Practical			
Subjec	type		L	Field	Ρ	of	Durati	Max	Ma	х.	Tot	Min.	Max	Max	Tot	Min.	
t Code				Work/		Credi	on of		Mai	rks	al	Passi			al	Passi	
(USC)				Assignm		ts	Paper	Mar				ng	Mar	Mar		ng	
				ent/			(Hrs.)	ks				Mark	ks	ks		Mar	
				Tutorial					Ses	Sessio		S				ks	
									na	I							
								ESE	М	1			тw	PEE			
									SE	Ε							
PCSS4	Е	Final	-	24	-	18	-	-	-	-			200	250	450	225	
1		Dissertation															
	SE	MESTER TOTAL		24		18	450										

GONDWANA UNIVERSITY, GADCHIROLI SYLLABUS (SEMESTER PATTERN CHOICE BASED CREDIT SYSTEM)

M.Tech. (Computer Science & Engineering)

Semester-I

le o	f the Coue:	rse:	PCSS11 Advanced	Computer Arch	nitecture							
Γ			Course Sch	neme		Evaluation S	cheme (Theo	ry)			
	Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total		
	03	02		05	04	03	10	20	70	100		
Ē	F 1	<u>, 1 (C</u>	. 1		Conten	ts						
quantitative principles of computer design												
	 Instruction bet principles and examples etassiving instruction set includy addressing type and size of operands- addressing modes for signal processing-operations in the instruction set instructions for control flow- encoding an instruction setthe role of compiler Instruction level parallelism (ILP)- over coming data hazards- reducing branch costs –high performance instruction delivery- hardware based speculation- limitation of ILP ILP software approach- compiler techniques- static branch protection- VLIW approach- H.W support for more ILP at compile time- H.W verses S.W solutions 											
	Memory I memory-	hierarchy d protection	lesign- cach and examp	e performance- les of VM.	reducing c	cache misses penalty and	miss ra	te – v	irtual			
	Multiprocessors and thread level parallelism- symmetric shared memory architectures- distributed shared memory- Synchronization- multi threading.											
	Storage systems- Types – Buses - RAID- errors and failures- bench marking a storage device designing a I/O system.											
	Inter connection networks and clusters- interconnection network media – practical issues in interconnecting networks- examples – clusters- designing a cluster											

Text Book:

1. Computer Architecture A quantitative approach 3rd edition John L. Hennessy & David A. Patterson Morgan Kufmann (An Imprint of Elsevier)

- 1. "Computer Architecture and parallel Processing" Kai Hwang and A.Briggs International Edition McGraw-Hill.
- 2. Advanced Computer Architectures, DezsoSima, Terence Fountain, Peter Kacsuk, Pearson.

Course Code:PCSS12Title of the Course:Advances in Operating System Design

		Course Sch	neme		Evaluation Scheme (Theory)						
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total		
03	02		05	04	03	10	20	70	100		

Contents Theory and implementation aspects of distribute operating system. Process synchronization in multiprocessing / multiprogramming system. Inter-process communication and co-ordination in large distributed systems. Distributed resource management. Fundamentals of real time operating systems. Case studies, Information management in distributed systems, security, integrity and concurrency problems. Fault tolerance issues. OS issue, related to the internet, intranets, pervasive computing, embedded systems, mobile systems and wireless networks. Case studies of contemporary operating systems.

Reference Books:

- 1. Advanced Concepts in Operating Systems by MukeshSinghal and Niranjan G. Shivratri, A McGraw Hill Publications.
- 2. Charles Crowley, "Operating Systems A Design Oriented approach", McGraw Hill 1997.

Course Code:PCSS13Title of the Course:Object Oriented Software Engineering

		Course Sch	neme		Evaluation Scheme (Theory)						
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total		
03	02		05	04	03	10	20	70	100		

Contents

Introduction to Software Engineering: Software Engineering Development, Software Life Cycle Models, Standards for developing life cycle models.

Object Methodologies and Requirement Elicitation: Introduction to Object Oriented Methodology, Overview of Requirements Elicitation, Requirements Model-Action & Use cases, Requirements Elicitation Activities, Managing Requirements Elicitation.

Architecture: Introduction, System development is model building, model architecture, requirements model, analysis model, the design model, the implementation model, test model.

Modeling with UML, Basic building blocks of UML, a conceptual model of UML, basic structural modeling, UML- diagrams

System Analysis and Design: Analysis model- dynamic modeling and testing-system design: design concepts and activities- Design models-Block design-Testing.

Testing Object Oriented Systems:

Introduction-Testing activities and techniques, The testing process-Managing Testing-State based Testing and Data Flow Testing for Classes-Case Studies.

Reference Books:

- Stephen R. Scach "Classical and Object Oriented Software Engineering. With UML and Java", 4th edition, Tata McGraw Hill, 2001
- Ivar Jacobson and Magnus Christenson "Object Oriented Software Engineering: A use case driven approach", Addison Wesley 1992.
- 3. Bernd Bruegge and Alen H. Dutoit, "Object Oriented Software Engineering", 2nd edition Pearson Education 2004
- 4. Timothy C. Lethbrige and Robert Laganiere, "Object Oriented Software Engineering: Practical Software Development using UML and Java", Tata McGraw Hill 2004.

Course Code:PCSS14ATitle of the Course:Data Warehousing& Data Mining

Course Scheme				Evaluation S	cheme (Theo	ory)		
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
03	02		05	04	03	10	20	70	100

Contents

Data Mining & Data Warehousing : Introduction to data mining, data Warehousing , Introduction to KDD process, Classifications and algorithms, Data mining tasks, Machine Learning- Basic-Concept, Data Warehouse Architecture , Data modeling.

Data marts &olap: Data Mart Designing, data mart builder, Data Mart Discovery, On-line analytical processing, OLTP VS. DW Environment.

Relationship of data mining and data warehousing : Application of Data Mining, Application of Data Warehousing, A relation between Data Mining and Data Warehousing according to need of business.

Stastical analysis and cluster analysis: What is statistics? Difference between statistics and data mining, Histograms, Statistic for predictions, clustering for clarity, Hierarchical and Non-Hierarchical clusters, Choosing classics.

Neural networks & mining complex: What are neural Networks? Where to use these Networks? Benefits and features of Networks, Rule Induction, various mining complexities.

Next generation of informatics mining & knowledge discovery : Business Intelligence and Information Mining .Text mining, Knowledge Management, Benefits and Products of Text Mining, Customer Relationship Management in the e-Business World.

- 1. Data Mining. By Pieter Adriaans
- 2. Data mining Technology for Marketing, Sales and Customer Support. By Michel Berry.
- 3. Data Warehousing & Data Mining for Telecommunication by Rob Maltison
- 4. Distributed Data Warehousing using Web Technology by R.A. Moeller.
- 5. Building Data Mining Application for CRM by Alex Berson

Course Code:PCSS14BTitle of the Course:Information Retrieval

Course Scheme					Evaluation S	cheme (Theo	ory)	
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
03	02		05	04	03	10	20	70	100

Contents

Boolean retrieval, The term vocabulary and postings lists, Dictionaries and tolerant retrieval, Index construction, Index compression. Scoring, Term weighting and the vector space model Computing scores in a complete search system, Evaluation in information retrieval.

Relevance feedback and query expansion, XML retrieval, Probabilistic information retrieval Language models for information retrieval, Text classification and Naive Bayes, Vector space classification, Support vector machines and machine learning on documents.

Flat clustering, Hierarchical clustering, Matrix decompositions and latent semantic indexing, Web search basics, Web crawling and indexes, Link analysis.

Reference Books:

- 1. An Introduction to Information Retrieval: Christopher D. Manning, PrabhakarRaghavan, HinrichSchütze, Cambridge University Press.
- 2. Language Processing: Jurafsky Dan and Martin James, Pearson Publication.
- 3. Natural Language Understanding: Allen James, Pearson Publication.

Course Code:	PCSS14C
Title of the Course:	Soft Computing

Course Scheme					Evaluation Scheme (Theory)				
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
03	02		05	04	03	10	20	70	100

Contents

ARTIFICIAL NEURAL NETWORKS

Basic concepts - Single layer perception - Multilayer Perception - Supervised and Unsupervised learning - Back propagation networks - Kohnen'sself-organizing networks - Hopfield network.

FUZZY SYSTEMS

Fuzzy sets and Fuzzy reasoning - Fuzzy matrices - Fuzzy functions - Decomposition - Fuzzy automata and languages - Fuzzy control methods - Fuzzy decision making.

NEURO - FUZZY MODELING

Adaptive networks based Fuzzy interface systems - Classification and Regression Trees - Data clustering Algorithms - Rule based structure identification - Neuro-Fuzzy controls - Simulated annealing Evolutionary computation.

GENETIC ALGORITHMS

Survival of the Fittest - Fitness Computations - Cross over - Mutation - Reproduction - Rank method - Rankspace method

SOFTCOMPUTING AND CONVENTIONAL AI

AI search algorithm - Predicate calculus - Rules of interference – Semantic networks - Frames - Objects - Hybrid models - Applications.

Reference Books:

1. Jang J.S.R., Sun C.T. and Mizutani E, "Neuro-Fuzzy and Soft computing", Pearson Education 2003.

2. Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw Hill, 1997.

3. LaureneFausett, "Fundamentals of Neural Networks", Pearson Education, 2003.

4. George J. Klir and Bo Yuan, "Fuzzy sets and Fuzzy Logic", Prentice Hall, USA 1995.

5. NihJ.Nelsson, "Artificial Intelligence - A New Synthesis", Harcourt Asia Ltd., 1998.

6. D.E. Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y, 1989.

Course Code: PCSS15 Title of the Course: Computer System Lab-I

		Course So	Evaluation Scheme (Lab)				
Lecture Tutorial Practical Periods/week Credits						PEE	Total
-	-	02	02	01	50	50	100

Contents
Student is expected to perform at least eight Experiments/Practical's based on the prescribed syllabus
of all the theory courses of first semester

Course Code:PCSS16Title of the Course:Seminar

	Course	Eva	luation	Scheme (Lab)			
Lecture	Tutorial	Practical	Periods/week	Credits	TW	PEE	Total
-	-	02	02	01	50	-	50

Contents

Student is expected to choose a recent technical topic of one of core areas and expected to thoroughly explore it and has to deliver a presentationand has to submit a report.

SYLLABUS (SEMESTER PATTERN CHOICE BASED CREDIT SYSTEM)

M. Tech. (Computer Science & Engineering)

Semester-II

Course Code:PCSS21Title of the Course:Advances in Algorithms

Course Scheme					Evaluatio	on Scher	ne (T	heory)	
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
03	02		05	04	03	10	20	70	100

Contents

Algorithmic paradigms : Dynamic Programming, Greedy, Branch-and-Bound, Asymptotic complexity, Amortized analysis, Graph Algorithms, Shortest paths, Flow networks, NP-completeness, Approximation algorithms, Randomized algorithms, Linear programming, Special topics, Geometric algorithms (range searching, convex hulls, segment intersections, closest pairs), Numerical algorithms (integer, matrix and polynomial multiplication, FFT, extended Euclid's algorithm, modular exponentiation, primarily testing, cryptographic computations), Internet algorithms (text pattern matching, tries, information retrieval, data compression, Web caching).

- 1. Introduction to Algorithms by Thomas H Coremen, Charles E Leiserson, Ronald L Rivest and Clifford Stein, Second edition, PHI, 2002.
- 2. Algorithm Design by Jon Kleinberg, Tremblay and Eva Tardos, Addison Wesley.

Course Code:PCSS22Title of the Course:Advanced Databases

Course Scheme					Evaluation Scheme (Theory)				
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
03	02		05	04	03	10	20	70	100

Contents

DATABASE MANAGEMENT

Relational Data Model – SQL – Database Design – Entity Relationship Model – Relational Normalization – Embedded SQL – Dynamic SQL – JDBC – ODBC.

ADVANCED DATABASES

Object Databases – Conceptual Object Data Model – XML and Web Data – XML Schema – Distributed Data bases – OLAP and Data Mining – ROLAP and MOLAP

QUERY AND TRANSACTION PROCESSING

Query Processing Basics – Heuristic Optimization – Cost Size Estimation – Models of Transactions – Architecture – Transaction Processing in a Centralized and Distributed System – TP Monitor.

IMPLEMENTING AND ISOLATION

Schedules – Concurrency Control – Objects and Semantic Commutativity – Locking – Crash – Abort and Media Failure – Recovery – Atomic Termination – Distributed Deadlock – Global Serialization – Replicated Databases – Distributed Transactions in Real World.

DATABASE DESIGN ISSUES

Security – Encryption – Digital Signatures – Authorization – Authenticated RPC – Integrity – Consistency – Database Tuning – Optimization and Research Issues.

Text Books:

- 1. Philip M. Lewis, Arthur Bernstein, Michael Kifer, "Databases and Transaction
- 2. Processing An Application Oriented Approach", Addison, Wesley, 2002.

Reference Books:

1. R.Elmasri and S.B. Navathe, "Fundamentals of Database Systems", 3rd Edition, Addison Wesley, 2004.

 Abraham Silberschatz, Henry F. Korth, S. Sudharsan, "Database System Concepts", 4th Edition., Tata McGraw Hill, 2004.

3. Raghu Ramakrishnan & Johannes Gehrke, "Database Management Systems", 3rd Edition, TMH, 2003. Course Code: PCSS23

Title of the Course: Advanced Digital Image Processing

		Course Sch	neme		Evaluatio	on Scher	ne (T	heory)			
Lecture Tute	orial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total		
03 0)2		05	04	03	10	20	70	100		
Contents											
Image Enhanc Histogram Equ of Spatial Filte	cement ualizat ering, S	t in the Sp tion, Histog Smoothing	atial Domain: S gram Processing Spatial Filters, S	patial and , Local E Sharpening	l Frequency methods, Ba nhancement, Image Subt g Spatial Filters.	asic Gra raction,	iy Le Imag	vel Tra ge Avei	nsformations, aging, Basics		
Fransforms: Transformatio processing.	Introd n, Fou	uction to urier Prope	the Fourier 7 erties, 2D FT, i	Fransform nverse Fo	ation, Discrete Fourier urier transform, Wavele	r Trans et transf	form orm	ation, and mu	Fast Fourier alti resolution		
lmage Enhand Filtering in th Domain Filter:	cemen ne Spa s, Hon	t in the fr atial and F nomorphic	requency Doma requency Doma Filtering, Imple	in: Filteri in, Smoo mentation.	ng in the Frequency D thing Frequency-Domain	omain, n Filters	Corres, Sh	espond arpenin	ence between g Frequency-		
Image Compre	ession:	Image cor	npression model	s, lossy&	loss less compression, in	nage cor	npres	sion sta	andards.		
Image Restora	ation, C	Color Imag	e Processing,								
Morphological Transformatio	l Ima on, Son	ge Proces ne Basic M	sing: Prelimina orphological Al	ries, Dila gorithms,	ation and Erosion, Op Extension to Gray-Scale	ening Images.	and	Closing	g, hit-or-miss		
Image Segmer Boundary Dete	ntation ection	n: Point I , Threshold	Detection, Line ding, Region-ori	Detection ented Seg	, Edge Detection, Gradi	ient Op	erator	r, Edge	Linking and		
Representatior	n: Cha	in Codes, F	Polygonal Appro	ximations	, Signatures, Boundary S	egments	s, Ske	leton o	f a Region.		
Description: B Topological D	Bounda Descrip	ry Descrip tors.	tors, Shape Num	bers, Fou	rier Descriptors, Regiona	l Descri	ptors	, Simpl	e Descriptors,		
Object Recogr	nition:	Recognitio	on based on deci	sion theore	etical methods, structural	method	s.				

- 1. Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", 2nd edition, Prentice Hall, 2002.
- 2. A K Jain, "Fundamentals of Digital Image Processing", Prentice Hall.
- 3. W K Pratt , "Digital Image Processing" 3rd Edition , John Wiley and Sons, New York
- 4. Chanda , Mazumdar , "Digital Image Processing", Prentice Hall, India.

Course Code:PCSS24ATitle of the Course:Pattern Recognition

Course Scheme				Evaluatio	on Schei	ne (T	heory)		
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
03	02		05	04	03	10	20	70	100

Contents

Introduction : Examples; The nature of statistical pattern recognition; Three learning paradigms; The sub-problems of pattern recognition; The basic structure of a pattern recognition system; Comparing classifiers.

Learning – Parametric Approaches: Basic statistical issues; Sources of classification error; Bias and variance; Three approaches to classification: density estimation, regression and discriminant analysis; Empirical error criteria; Optimization methods; Failure of MLE.

Parametric Discriminant Functions: Linear and quadratic discriminants; Shrinkage; Logistic Classification; Generalized Liner classifiers; Perceptrons; Maximum Margin, Error Correcting Codes.

Error Assessment: Sample error and true error; Error rate estimation; Confidence intervals, Resampling methods; Regularization; Model selection, Minimum description length; Comparing classifiers.

Nonparametric Classification; Histograms rules; nearest neighbor method, Kernel approaches, Local polynomial fitting; Flexible metrics, Automatic Kernels methods.

Feature Extraction: Optimal features; Optimal liner transformations; Linear and nonlinear principal components; Feature subset selection.

- 1. Pattern Recognition principles by Julus T. Tou and Rafel C. Gonzalez, Addision Wesley Publishing Company.
- 2. Pattern Recognition and Image Analysis by Earl Gose, Richard Johnsonbaugh, Prentice Hall of India Private Limited, 1999.

Course Code:

PCSS24B

Title of the Course: Statistical Machine Learning

Course Scheme					Evaluation S	cheme (Theo	ory)	
Lecture	Tutorial	Practical	Periods/week	Credits	edits Duration of paper, hrs MSE IE I				Total
03	02		05	04	03	10	20	70	100

Contents

Introduction, Types of Machine Learning, Supervised Learning, Regression and Classification, Linear discriminants, The Perceptron.

Multilayer perceptron, Back Propagation of Error, Multilayer perceptron in practice, Examples using MLP, Radial Basis functions and Splines, Interpolation and basis functions.

Support Vector Machine, Optimal separation, Kernels, Learning with trees, Using Decision Trees, Implementation of decision trees, Classification and Regression trees CART, Decision by committee: Ensemble Learning.

Probability and learning, Turning data into probabilities, Gaussian Mixture model and nearest neighborhood model, Unsupervised learning, K-means algorithm, Vector Quantization, Self-Organized feature map. Dimensionality Reduction, Linear Discriminant analysis (LDA), Factor Analysis, Independent Component Analysis, Reinforcement Learning, Markov Chain Monte Carlo Methods, Graphical Methods.

- 1. Machine Learning: An Algorithmic Perspective, Stephen Marsland, Chapman and Hall publications
- 2. Pattern Recognition and Machine Learning, Bishop, Christopher M., Springer
- 3. Machine learning: Drew Conway and John White, Oreille publications
- 4. Machine Learning, Tom M.Mitchell, McGraw Hill Publication

Course Code:PCSS24CTitle of the Course:Network Security & Cryptography

Course Scheme				Evaluation Scheme (Theory)						
	Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
ĺ	03	02		05	04	03	10	20	70	100

Contents

Introduction:

Attacks, Services and Mechanisms, Security attacks, Security services, A Model for Internetwork security. Classical Techniques: Conventional Encryption model, Steganography, Classical Encryption Techniques.

Modern Techniques:

Symplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles and Modes of operations. Algorithms: Triple DES, International Data Encryption algorithm, Blowfish, RC5, CAST-128, RC2, Characteristics of Advanced Symmetric block cifers.

Conventional Encryption:

Placement of Encryption function, Traffic confidentiality, Key distribution, Random Number Generation. Public Key Cryptography: Principles, RSA Algorithm, Key Management, Diffie-Hellman Key exchange, Elliptic Curve Cryptograpy.

Number theory:

Prime and Relatively prime numbers, Modular arithmetic, Fermat's and Euler's theorems, Testing for primality, Euclid's Algorithm, the Chinese remainder theorem, Discrete logarithms. Message authentication and Hash functions: Authentication requirements and functions, Message Authentication, Hash functions, Security of Hash functions and MACs.

Hash and Mac Algorithms:

MD File, Message digest Algorithm, Secure Hash Algorithm, RIPEMD-160, HMAC. Digital signatures and Authentication protocols: Digital signatures, Authentication Protocols, Digital signature standards.

Authentication Applications:

Kerberos, X.509 directory Authentication service. Electronic Mail Security: Pretty Good Privacy, S/MIME. **IP Security:** Overview, Architecture, Authentication, Encapsulating Security Payload, Combining security Associations, Key Management. Web Security: Web Security requirements, Secure sockets layer and Transport layer security, Secure Electronic Transaction.

Reference Book:

1. Cryptography and Network Security: Principles and Practice by William Stallings, Pearson Publications, Sixth Edition, 2014.

Course Code:PCSS25Title of the Course:Computer System Lab-II

Course Scheme						tion Scheme (Lab)		
Lecture	Tutorial	Practical	Periods/week	Credits	TW	PEE	Total	
-	-	02	02	01	50	50	100	

Contents Student is expected to perform at least eight Experiments/Practical's based on the prescribed syllabus of all the theory courses of first semester

Course Code:PCSS26Title of the Course:Seminar

Course Scheme					Evalua	valuation Scheme (Lab)		
Lecture	Tutorial	Practical	Periods/week	Credits	TW	PEE	Total	
-	-	02	02	01	50	-	50	

Contents
Student is expected to choose a recent technical topic of one of core areas and
expected to thoroughly explore it and has to deliver a presentation and has to submit
a report.