## Gondwana University,

## Gadchiroli



**Board of Studies in** 

**Electronics Engineering** 

Choice Based Credit System

III/IV/V/VI Semesters Syllabus

#### GONDWANA UNIVERSITY, GADCHIROLI

#### FACULTY OF SCIENCE & TECHNOLOGY

#### CONSOLIDATED STATEMENT OF VARIOUS PARAMETERS IN TEACHING & EXAMINATION SCHEME OF

| SR.<br>NO. | SEMESTER | NO. OF<br>THEORY<br>SUBJECTS | NO OF<br>LABS/PRACT | TEACHING<br>HOURS(TH)<br>(L+T) | TEACHING<br>HOURS<br>(PRACT) | TOTAL<br>CREDIT | MAX.<br>THEORY<br>MARKS | MAX.PRACT<br>MARKS | MAX.<br>MARKS<br>TOTAL |
|------------|----------|------------------------------|---------------------|--------------------------------|------------------------------|-----------------|-------------------------|--------------------|------------------------|
| 1          | Ι        |                              |                     |                                |                              |                 |                         |                    |                        |
| 2          | Π        |                              |                     |                                |                              |                 |                         |                    |                        |
| 3          | III      | 5                            | 3                   | 19                             | 6                            | 22              | 500                     | 150                | 650                    |
| 4          | IV       | 5                            | 4                   | 20                             | 8                            | 24              | 500                     | 200                | 700                    |
| 5          | V        | 5                            | 4                   | 18                             | 8                            | 23              | 500                     | 200                | 700                    |
| 6          | VI       | 5                            | 3                   | 20                             | 6                            | 23              | 500                     | 150                | 650                    |
| 7          | VII      | 5                            | 3                   | 20                             | 8                            | 23              | 500                     | 150                | 650                    |
| 8          | VIII     | 5                            | 3                   | 19                             | 12                           | 23              | 500                     | 250                | 750                    |
|            |          |                              |                     |                                |                              |                 |                         |                    |                        |
|            |          | 30                           | 20                  | 116                            | 48                           | 138             | 3000                    | 1100               | 4100                   |

#### **B.E. (ELECTRONICS ENGINEERING)**

\*Audit course. It is neither considered as passing head nor considered for earning some credit(s). However, this is mandatory to be taken up at the respective college level

Subject wise Board of Studies Affiliation

| Board of Studies        | Subject Codes                          |
|-------------------------|----------------------------------------|
| APPLIED SCIENCES &      | BEEN 301,BEEN 401,BEEN 505             |
| HUMANITIES              |                                        |
| ELECTRICAL ENGINEERING  | BEEN 303, BEEN 405, BEEN 503, BEEN 603 |
| COMPUTER                | BEEN604                                |
| TECHNOLOGY/CSE          |                                        |
| ELECTRONICS ENGINEERING | Rest all ,except above enlisted        |
| EN/ETC/ECE COMMOMN      | BEET302/BEEN302, BEET305/BEEN305,BEET  |
|                         | 403/BEEN403,BEET405/BEEN404            |
|                         | BEET501/BEEN501,BEET502/BEEN502,       |
|                         | BEET601/BEEN601,BEET602/BEEN602        |

А

#### Appendix A

#### <u>Gondwana University, Gadchiroli</u> Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Choice Based Credit System Third Semester B.E. (Electronics Engineering)

|                | -                                         | -  | Feacl        | hing S   | cheme         | Examination Scheme             |                      |                              |                       |       |                          |                     |                      |       |                          |
|----------------|-------------------------------------------|----|--------------|----------|---------------|--------------------------------|----------------------|------------------------------|-----------------------|-------|--------------------------|---------------------|----------------------|-------|--------------------------|
|                |                                           | He | ours<br>Weel | Per<br>k | <b>NT</b> 1   |                                |                      | THEOP                        | RY                    |       |                          |                     | PRAC                 | ΓICAL |                          |
| Code           | Subject                                   |    | Т            | Р        | of<br>Credits | Duration<br>of Paper<br>(Hrs.) | Max.<br>Marks<br>ESE | Max<br>Marl<br>Sessio<br>MSE | k.<br>ks<br>mal<br>IE | Total | Min.<br>Passing<br>Marks | Max.<br>Marks<br>TW | Max.<br>Marks<br>POE | Total | Min.<br>Passing<br>Marks |
| 3BEEN01        | Applied Mathematics-III                   | 4  | 0            | 0        | 4             | 3                              | 80                   | 10                           | 10                    | 100   | 40                       |                     |                      |       |                          |
| 3BEEN02        | Electronic Devices &<br>Circuits          | 3  | 1            | 0        | 4             | 3                              | 80                   | 10                           | 10                    | 100   | 40                       |                     |                      |       |                          |
| 3BEEN03        | Network Theory                            | 3  | 0            | 0        | 3             | 3                              | 80                   | 10                           | 10                    | 100   | 40                       |                     |                      |       |                          |
| 3BEEN04        | Programming Language C<br>++              | 3  | 1            | 0        | 4             | 3                              | 80                   | 10                           | 10                    | 100   | 40                       |                     |                      |       |                          |
| 3BEEN05        | Electronic Measurements & Instrumentation | 3  | 1            | 0        | 4             | 3                              | 80                   | 10                           | 10                    | 100   | 40                       |                     |                      |       |                          |
| Laboratories   | 5                                         |    |              |          |               |                                |                      |                              |                       |       |                          |                     |                      |       |                          |
| 3BEEN06        | Electronic Devices &<br>Circuits          | 0  | 0            | 2        | 1             |                                |                      |                              |                       |       |                          | 25                  | 25                   | 50    | 25                       |
| 3BEEN07        | Programming Language C<br>++              | 0  | 0            | 2        | 1             |                                |                      |                              |                       |       |                          | 25                  | 25                   | 50    | 25                       |
| 3BEEN08        | Electronic Measurements & Instrumentation | 0  | 0            | 2        | 1             |                                |                      |                              |                       |       |                          | 25                  | 25                   | 50    | 25                       |
| Total          |                                           | 16 | 3            | 6        |               |                                |                      |                              |                       |       |                          |                     |                      |       |                          |
| Semester Total |                                           | 25 |              |          | 22            |                                |                      |                              |                       | 500   |                          |                     |                      | 150   | 650                      |

#### <u>Gondwana University, Gadchiroli</u> Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Choice Based Credit System Fourth Semester B.E. (Electronics Engineering)

|                                                                  |                                                          |                                                          | ,  | Teacl        | hing S   | cheme         | Examination Scheme             |                      |                            |                         |       |                          |                     |                      |       |                          |
|------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----|--------------|----------|---------------|--------------------------------|----------------------|----------------------------|-------------------------|-------|--------------------------|---------------------|----------------------|-------|--------------------------|
|                                                                  |                                                          |                                                          | He | ours<br>Weel | Per<br>k |               |                                |                      | THEOR                      | RY                      |       |                          |                     | PRAC                 | ΓICAL |                          |
| Code                                                             | Subject                                                  |                                                          | L  | Т            | Р        | of<br>Credits | Duration<br>of Paper<br>(Hrs.) | Max.<br>Marks<br>ESE | Ma<br>Mar<br>Sessie<br>MSE | x.<br>·ks<br>onal<br>IE | Total | Min.<br>Passing<br>Marks | Max.<br>Marks<br>TW | Max.<br>Marks<br>POE | Total | Min.<br>Passing<br>Marks |
| 4BEEN01                                                          | Applied Mathematics-IV                                   |                                                          | 4  | 0            | 0        | 4             | 3                              | 80                   | 10                         | 10                      | 100   | 40                       |                     |                      |       |                          |
| 4BEEN02                                                          | Digital Circuits &<br>Fundamentals of<br>Microprocessors |                                                          | 3  | 1            | 0        | 4             | 3                              | 80                   | 10                         | 10                      | 100   | 40                       |                     |                      |       |                          |
| 4BEEN03                                                          | Electromagnetic Fields                                   |                                                          | 3  | 1            | 0        | 4             | 3                              | 80                   | 10                         | 10                      | 100   | 40                       |                     |                      |       |                          |
| 4BEEN04                                                          | Electronic Engineering<br>Materials & Components         |                                                          | 3  | 1            | 0        | 4             | 3                              | 80                   | 10                         | 10                      | 100   | 40                       |                     |                      |       |                          |
| 4BEEN05                                                          | Basic                                                    | e Electrical Machines                                    | 3  | 1            | 0        | 4             | 3                              | 80                   | 10                         | 10                      | 100   | 40                       |                     |                      |       |                          |
| Laboratorie                                                      | S                                                        |                                                          |    |              |          |               |                                |                      |                            |                         |       |                          |                     |                      |       |                          |
| 4BEEN06 Digital Circuits &<br>Fundamentals of<br>Microprocessors |                                                          | Digital Circuits &<br>Fundamentals of<br>Microprocessors | 0  | 0            | 2        | 1             |                                |                      |                            |                         |       |                          | 25                  | 25                   | 50    | 25                       |
| 4BEEN07                                                          | 7 Basic Electrical<br>Machines                           |                                                          | 0  | 0            | 2        | 1             |                                |                      |                            |                         |       |                          | 25                  | 25                   | 50    | 25                       |
| 4BEEN08                                                          | 08 Programming Practice<br>(MATLAB/SCILAB)               |                                                          | 0  | 0            | 2        | 1             |                                | -                    |                            |                         |       |                          | 25                  | 25                   | 50    | 25                       |
| 4BEEN09 Personal Proficiency-I                                   |                                                          | 0                                                        | 0  | 2            | 1        |               |                                |                      |                            |                         |       | 50                       |                     | 50                   | 25    |                          |
| Total                                                            |                                                          |                                                          | 16 | 4            | 8        |               |                                |                      |                            |                         |       |                          |                     |                      |       |                          |
| Semester Total                                                   |                                                          |                                                          |    | 28           |          | 24            |                                |                      |                            |                         | 500   |                          |                     |                      | 200   | 700                      |

Appendix A

#### <u>Gondwana University, Gadchiroli</u> Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Choice Based Credit System Fifth Semester B.E. (Electronics Engineering)

|                | _                                         |          | each          | ing | Scheme        | Examination Scheme             |                    |                |                        |       |                  |                     |                      |       |                           |
|----------------|-------------------------------------------|----------|---------------|-----|---------------|--------------------------------|--------------------|----------------|------------------------|-------|------------------|---------------------|----------------------|-------|---------------------------|
|                |                                           | Hor<br>V | urs I<br>Veek | Per |               | THEORY                         |                    |                |                        |       |                  | PRACTICAL           |                      |       |                           |
| Subject        | Subject                                   |          |               |     | Number        |                                |                    | M<br>M<br>Sess | lax.<br>arks<br>sional |       |                  | Ma                  | Ma                   |       |                           |
| Code           |                                           | L        | Т             | Р   | of<br>Credits | Duration<br>of Paper<br>(Hrs.) | Marks<br>ESE<br>80 | MSE            | IE                     | Total | Passing<br>Marks | Ma<br>rks<br>T<br>W | Ma<br>rks<br>PO<br>E | Total | Min .<br>Passing<br>Marks |
| 5BEEN 01       | Linear Integrated Circuit                 | 3        | 1             | 0   | 3             | 3                              | 80                 | 10             | 10                     | 100   | 40               |                     |                      |       |                           |
| 5BEEN502       | Signals & Systems                         | 3        | 1             | 0   | 3             | 3                              | 80                 | 10             | 10                     | 100   | 40               |                     |                      |       |                           |
| 5BEEN503       | Power Electronics                         | 3        | 0             | 0   | 3             | 3                              | 80                 | 10             | 10                     | 100   | 40               |                     |                      |       |                           |
| 5BEEN504       | Advanced Microprocessors<br>& Interfacing | 3        | 1             | 0   | 3             | 3                              | 80                 | 10             | 10                     | 100   | 40               |                     |                      |       |                           |
| 5BEEN505       | Program Electives– I #                    | 3        | 0             | 0   | 3             | 3                              | 80                 | 10             | 10                     | 100   | 40               |                     |                      |       |                           |
| Laboratories   |                                           |          |               |     |               |                                |                    |                |                        |       |                  |                     |                      |       |                           |
| 5BEEN506       | Linear Integrated Circuits                | 0        | 0             | 2   | 2             |                                |                    |                |                        |       |                  | 25                  | 25                   | 50    | 25                        |
| 5BEEN507       | Advanced Microprocessors<br>& Interfacing | 0        | 0             | 2   | 2             |                                |                    |                |                        |       |                  | 25                  | 25                   | 50    | 25                        |
| 5BEEN508       | Power Electronics                         | 0        | 0             | 2   | 2             |                                |                    |                |                        |       |                  | 25                  | 25                   | 50    | 25                        |
| 5BEEN509       | Minor Project and Seminar                 | 0        | 0             | 2   | 2             |                                |                    |                |                        |       |                  | 50                  |                      | 50    | 25                        |
| Total          |                                           | 15       | 3             | 8   |               |                                |                    |                |                        |       |                  |                     |                      |       |                           |
| Semester Total |                                           |          | 26            |     | 23            |                                |                    |                |                        | 500   |                  |                     |                      | 200   | 700                       |

#1.TheoryofCommunication Engineering 2.Electronic System design 3. Switching Theory and Automata

# Industrial Training /Internship/Case Studies: - It is to be completed during the summer vacation after completion of fourth semester and/or winter vacation after the completion of Fifth semester and its planning and allocation should be done during the fourth/ fifth semester and its marks will be awarded in the sixth semester for subject code 6BEEN08 on submission of the certified relevant report at the end of sixth semester.

#### Appendix A

#### <u>Gondwana University, Gadchiroli</u> Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Choice Based Credit System Sixth Semester B.E. (Electronics Engineering)

|                                                                   |                                            |   | Teac         | hing S   | cheme                   | Examination Scheme |               |                  |                      |       |                 |               |               |       |                 |
|-------------------------------------------------------------------|--------------------------------------------|---|--------------|----------|-------------------------|--------------------|---------------|------------------|----------------------|-------|-----------------|---------------|---------------|-------|-----------------|
|                                                                   |                                            | Н | ours<br>Weel | Per<br>k |                         |                    |               | THEO             | RY                   |       |                 | PRACTICAL     |               |       |                 |
| Subject<br>Code                                                   | Subject                                    | L | Т            | Р        | Number<br>of<br>Credits | Duration of Paper  | Max.<br>Marks | Ma<br>Ma<br>Sess | ax.<br>arks<br>ional | Total | Min.<br>Passing | Max.<br>Marks | Max.<br>Marks | Total | Min.<br>Passing |
|                                                                   |                                            |   |              |          |                         | (Hrs.)             | ESE           | MSE              | IE                   | -     | Marks           | TW            | POE           |       | Marks           |
| 6BEEN 601                                                         | Principles of Communication<br>Engineering | 3 | 1            | 0        | 3                       | 3                  | 80            | 10               | 10                   | 100   | 40              |               |               |       |                 |
| 6BEEN 602                                                         | Fields & Radiating Systems                 | 3 | 1            | 0        | 4                       | 3                  | 80            | 10               | 10                   | 100   | 40              |               |               |       |                 |
| 6BEEN 603                                                         | Control System Engineering                 | 3 | 1            | 0        | 4                       | 3                  | 80            | 10               | 10                   | 100   | 40              |               |               |       |                 |
| 6BEEN604                                                          | Microcontrollers & Its<br>Applications     | 3 | 1            | 0        | 3                       | 3                  | 80            | 10 10            |                      | 100   | 40              |               |               |       |                 |
| 6BEEN 605                                                         | Program Electives– II #                    | 3 | 1            | 0        | 3                       | 3                  | 80            | 10               | 10                   | 100   | 40              |               |               |       |                 |
| Laboratories                                                      |                                            |   |              |          |                         |                    |               |                  |                      |       |                 |               |               |       |                 |
| 6BEEN 606                                                         | Principles of communication<br>Engineering | 0 | 0            | 2        | 2                       |                    |               |                  |                      |       |                 | 25            | 25            | 50    | 25              |
| 6BEEN 607                                                         | Microcontrollers & its<br>Applications     | 0 | 0            | 2        | 2                       |                    |               |                  |                      |       |                 | 25            | 25            | 50    | 25              |
| 6BEEN608 <b># Industrial Training</b><br>/Internship/Case Studies |                                            | 0 | 0            | 2        | 2                       |                    |               |                  |                      |       |                 | 50            |               | 50    | 25              |
| Total                                                             |                                            |   | 5            | 6        |                         |                    |               |                  |                      |       |                 |               |               |       |                 |
| Semester Total                                                    |                                            |   | 26           |          | 23                      |                    |               |                  |                      | 500   |                 |               |               | 150   | 650             |

ELECTIVE-II # 1.Computer Architecture and Organization. 2. Digital Communication 3. Mechatronics

# Industrial Training /Internship/Case Studies: - It is to be completed during the summer vacation after completion of fourth semester and/or winter vacation after the completion of Fifth semester and its planning and allocation should be done during the fourth/ fifth semester and its marks will be awarded in the sixth semester for subject code 6BEEN08 on submission of the certified relevant report at the end of sixth semester.

# V Semester B.E. Electronics Engineering

#### FIFTHSEMESTERBEELECTRONICS ENGINEERING

CourseCode:5BEEN501

#### Title of the Course:LINEAR ELECTRONIC CIRCUITS

|         | С        | ourse Scher | ne               | Evaluation Scheme (Theory) |                              |     |    |     |       |  |
|---------|----------|-------------|------------------|----------------------------|------------------------------|-----|----|-----|-------|--|
| Lecture | Tutorial | Practical   | Periods/<br>week | Credits                    | Duration<br>Of paper,<br>hrs | MSE | IE | ESE | Total |  |
| 3       | 1        | 0           | 4                | 4                          | 3 10                         | 10  | 80 | 100 |       |  |

| Unit | Contents                                                                                                                                                                                                                                            | Hours |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I.   | Basic Operational Amplifier, Differential Amplifier Stages, Current Source Biasing,<br>Level Shifting Techniques, Common Mode and Differential Mode Gains, Frequency<br>Response and Compensation.                                                  | 10    |
| II.  | Characteristics of Ideal And Non Ideal OpAmp, Error Measurement of Various<br>Parameters, LinearApplicationLikeInverting, NonInverting.Integrator, Differentiator, Differential Amp, Bridge<br>Amplifier, Voltage to Current Converter, Regulators. | 12    |
| III. | Non-Linear Application Like Limiters, Precision Rectifier, Log Amplifier, Antilog<br>Amplifier, Multiplier, Divider, As table, Mono stable, Comparator, Schmitt Trigger, Square to triangular Wave<br>Generator.                                    |       |
| IV.  | Design of Active filter. 1 and 2 order butter worth filter, Sinusoidal Oscillators D/A and A/D Conversion Circuits, Sample Hold Circuits.                                                                                                           | 08    |
| V.   | Application of ICs Like LM741, LM 555 Timer ICs, Phase Locked Loop, LM 566(VCO), LM339(Comparator), LM723(Voltage Regulator), Regulator IC Series 78xx, 79xx.                                                                                       | 12    |

#### **Reference Books :**

- 1. R. A. Gaikwad, "Op Amps and Linear Integrated Circuits", PHI Publication, 4th Edition
- 2. D. Roy Choudhary, Shail Jain, "Linear Integrated Circuits", New Age International
- 3. U. A. Bakshi, A. P. Godse, "Linear Integrated Circuits & Application", Technical Publication Pune
- 4. K. R. Botkar, "Integrated Circuits", Hanna Publication 9th Edition
- 5. Coughlin, Driscoll, "Operational Amplifiers and Linear Integrated Circuits", PHIPublication4thEdition

### FIFTH SEMESTER B.E. ELECTRONICS AND COMMUNICATION ENGINEERING/ ELECTRONICSAND TELECOMMUNICATION ENGINEERING

#### Course Code : 5BEEN02

#### Title of the Course : SIGNALS AND SYSTEMS

|         | С        | ourse Scher | ne               |         |                              | Evaluation | n Scheme ( | (Theory) |       |
|---------|----------|-------------|------------------|---------|------------------------------|------------|------------|----------|-------|
| Lecture | Tutorial | Practical   | Periods/<br>week | Credits | Duration<br>of paper,<br>hrs | MSE        | IE         | ESE      | Total |
| 3       | 1        | 0           | 4                | 4       | 3                            | 10         | 10         | 80       | 100   |

#### **COURSE OBJECTIVES:**

The aim of the course is for:

- 1. Understanding the fundamental characteristics of signals and systems.
- 2. Understanding signals and systems in terms of both the time and transform domains,
- 3. taking advantage of the complementary insights and tools that these different perspectives provide.

#### 4. Development of the mathematical skills to solve problems involving convolution, filtering and modulation.

| Unit | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hours |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ι    | INTRODUCTION TO SIGNALS AND SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|      | Introduction, Continuous Time and Discrete Time signals, Elementary Signals: Unit Impulse, Unit<br>Step, Ramp, Rectangular, Triangular, Signum, Sinc, Exponential and Sinusoidal, Transformation of<br>Independent Variable: Time Shifting, Time Scaling and Time Reversal, Classification of Signals:<br>Periodic and Aperiodic, Even and Odd, Energy and Power, Causal and Non causal.<br>Systems: Definition, Classification: Linear and Non Linear, Time Variant and Invariant, Causal and<br>Non-causal, Static and Dynamic, Stable and Unstable, Invertible and Non Invertible, Incrementally<br>linear Systems. | 10    |
| II   | LINEAR TIME INVARIANT SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|      | Discrete-Time LTI Systems: The Convolution Sum, Continuous-Time LTI Systems: The Convolution Integral, Properties of Linear Time-Invariant Systems: Invertibility, Causality, Stability, Unit step response of an LTI System, Causal LTI Systems Described by Differential and Difference Equations.                                                                                                                                                                                                                                                                                                                   | 9     |
| III  | FOURIER SERIES REPRESENTATION OF PERIODIC SIGNALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |

|    | The Laplace Transform, The Region of Convergence for Laplace Transforms, The Inverse Laplace Transform, Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot, Properties of the Laplace Transform, Laplace Transform Pairs, Analysis and Characterization of LTI Systems Using the Laplace Transform, The Unilateral Laplace Transform. | 8 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| V  | THE LAPLACE TRANSFORM                                                                                                                                                                                                                                                                                                                                    |   |
|    | Representation of Aperiodic Signals: The Continuous-Time Fourier Transform, The Fourier Transform for Periodic Signals, Properties of the Continuous-Time Fourier Transform, The Discrete-Time Fourier Transform (DTFT), DTFT of Discrete Periodic Signals, Properties of the DTFT.                                                                      | 9 |
| IV | FOURIER TRANSFORM                                                                                                                                                                                                                                                                                                                                        |   |
|    | The Response of LTI Systems to Complex Exponentials, Fourier Series Representation of Continuous-TimePeriodic Signals, Convergence of the Fourier Series, Properties of Continuous-Time Fourier Series, Fourier Series Representation of Discrete-TimePeriodic Signal, Properties of Discrete-Time Fourier Series, Fourier Series and LTI Systems.       | 9 |

#### **TEXT BOOKS:**

1. "Signals and Systems" by Alan V. Oppenheim, Alan S. Wilsky and S. Hamid Nawab, Publication: Prentice Hall of I ndia.

2. "Signals and Systems" by P. Ramesh Babu, R. Ananda Natarajan, SciTech Publications (India).

#### **REFERENCE BOOKS:**

- 1. "Signals and Linear Systems" by Gabel R.A. and Robert R.A, John Wiley and Sons, New York.
- 2. "Systems and Signal Analysis" by C. T. Chen Publication: Oxford University Press, India.
- 3. "Introduction to Signals and Systems" by Michael J. Robert, Publication: Tata Mc-Graw Hill.
- 4. "Signals and Systems" by S. Haykin and B. V. Veen, Publications: Joh n Wiley and Sons, Inc.
- 5. "Signals and Systems Analysis using, Transform Methods and MATLAB" by M. J. Roberts Tata McGraw-Hill Publishing Company Limited.

#### **Course Outcome**

At the end of the course Students will be able to -

- CO1 Analyse different types of signals & Systems.
- CO2 Determine the response of LTI system using convolution.
- CO3 Assess the spectral characteristics of periodic and aperiodic signals.
- CO4 Inspect system properties based on impulse response.
- CO5 Prove the properties of various transforms

#### CourseCode

:EN503

#### Course Code: 5BEEN 03 Title of the Course :**POWER ELECTRONICS**

#### FIFTH SEMESTER B.E. (Electronics / Electronics & ele) Communication/Instrumentation)

#### **SUBJECT : POWER ELECTRONICS**

| Lectures | Tutorial(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Practical                                                                                              | Total periods/week (each of 60<br>minutes)                                                                                                                                                                                                                                                      | Credits                                                                                                                                               |                                                           |       |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------|--|--|--|
| 03       | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02                                                                                                     | 07                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                     |                                                           |       |  |  |  |
| Unit     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        | Contents                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                           | Hours |  |  |  |
| I        | Basic sin Powe<br>Development of<br>Controllers, Th<br>ratings of SCR<br>Gates, FlipFlop<br>Power Transist                                                                                                                                                                                                                                                                                                                                                                                            | er Electronic<br>of Power Cont<br>ayristor Family<br>s, Relaxation<br>o and Circuit I<br>for, Power MC | s Engineering<br>rollers, Working Principle & Characteristics of differ<br>y, Two Transistor model of SCR, Gate Characteristic<br>Oscillator susing UJT, Basic Firing Circuits for SC<br>Breaker, AC Power control using TRIAC-DIAC, Bas<br>OSFET & IGBT (Basic properties, characteristics, co | rent Power<br>7, Turn On ,Turn Off M<br>7R, Application of SC<br>7, Application of SC<br>7, Application & application<br>7, Application & Application | Mechanisms & other<br>R in obtaining Logic<br>SCR<br>ons) | 12    |  |  |  |
| п        | Phase Controlled Rectification           Principle of Phase Control, Line Commutation, Single phase half wave, Full wave mid–point,           Fullycontrolledwith&withoutfreewheelingdiodewithdifferenttypesofLoads,Effectof Source inductance, Half Controlled Bridge configurations, Development of expressions for mean current & voltage for different loads, Dual Converter           Three Phase fully controlled& half controlled bridge circuits, Development of expressions form ean voltage |                                                                                                        |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |                                                           |       |  |  |  |
| III      | <b>Inverters</b><br>PrincipleofInve<br>& Three phase<br>Design of Filte<br>Three phase fu<br>circuit for Three                                                                                                                                                                                                                                                                                                                                                                                        | ersion, Various<br>series Inverte<br>r<br>lly controlled<br>ee phase Powe                              | TechniquesofForcedCommutation&theirdesigns,Sir<br>r, Single Phase Parallel Inverter, Single phase bridge<br>bridge inverters in different modes (without commu<br>r Control Circuits                                                                                                            | glephase<br>Inverter (All with co<br>tation Circuit), Desigr                                                                                          | mmutation Circuits),<br>of complete firing                | 12    |  |  |  |

| IV | Choppers & Cyclo converter<br>Principle of Working, Types of Choppers, Oscillating Chopper, Jones & Morgan's Chopper,<br>Multiphase Chopper, Step-up Chopper, AC Chopper,<br>Need&PrincipleofWorkingofCycloconverterusingsinglephasebridgecircuits      | 08 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| V  | Multiple Connection& Protection<br>Need&methodsofmultipleconnectionsofSCRs,DesignofEqualizingCircuits,FiringCircuits<br>duringmultipleconnection,Gateprotection,Overcurrent&overvoltageprotectionsofSCR, Design of Snubber Circuit, Converter<br>Faults | 08 |
|    | Total                                                                                                                                                                                                                                                   | 50 |

#### **TextBooks:**

- (1) M.H.Rashid, "PowerElectronicsCircuits, Devives& Applications", PearsonEducation
- (2) C.W. Lander, "Power Electronics", McGrawHill
- (3) M. Ramamoorthy, "Thyristors & their Applications"
- (4) GKDubey, Doradla, Singh, Joshi"ThyristorstorizedPowerControllers", NewAgeInternational
- (5) Singh, Khanchandani, "Power Electronics", Tata McGrawHill
- (6) SCR Manaual by General Electric

#### **Reference Books:**

- (1) PhilipT.Krein, "Elements of Power Electronics", Oxford University Press
- (2) Ve damSubrahmanyam, "PowerElectronics", NewAgeInternational
- (3) MSJamilAsghar, "PowerElectronics", PrenticeHallofIndia
- (4) PCSen,"ModernPowerElectronics", S. ChandPublishers
- (5) PSBhimra, "PowerElectronics", KhannaPublishers

| Title of the<br>Course Co                | Title of the Course : ADVANCED MICROPROCESSOR ANDINTERFACING<br>Course Code: 5BEEN 04 |           |                  |         |                           |     |    |     |       |  |
|------------------------------------------|---------------------------------------------------------------------------------------|-----------|------------------|---------|---------------------------|-----|----|-----|-------|--|
| Course Scheme Evaluation Scheme (Theory) |                                                                                       |           |                  |         |                           |     |    |     |       |  |
| Lecture                                  | Tutorial                                                                              | Practical | Periods/<br>week | Credits | Duration<br>Of paper, hrs | MSE | IE | ESE | Total |  |
| 3                                        | 1                                                                                     |           | 4                | 4       | 3Hrs                      | 10  | 10 | 80  | 100   |  |

| Unit | Contents                                                                                                                                                                                                                                                                                                              | Hours |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ι    | Introductionto16-bitMicroprocessor8086:                                                                                                                                                                                                                                                                               |       |
|      | Architecture of 16bit Microprocessor8086, conceptof pipelining and memory segmentation<br>,logical address, offset address and physical address, Bus Interface Unit (BIU), Execution Unit (EU), segment registers, Pin<br>functions, Minimum and Maximum mode of operation, addressing modes,, assembler directives,. | 12    |
| II   | Instruction set, Interrupt sand Memory Interfacing:                                                                                                                                                                                                                                                                   |       |
|      | Instruction set, Assembly Language programming, Stackstructureof8086, Interrupts and<br>Interrupt servicer outines, processing finterrupt, Internal and External interrupts, Interrupt Priorities, Memory Interfacing<br>Concepts, Interfacing of 8086 Microprocessor with memory ICs.                                | 8     |
| III  | PIO8255[Programmable Input-Output Port]                                                                                                                                                                                                                                                                               |       |
|      | ProgrammablePeripheralInterface8255, architecture, signal descriptions and operational modes. Interfacing of 8255 with 8086, Interfacing of ADC & DAC, Stepper motor interfacing; Programmable Interval Timer 8254: Architecture and Signal Descriptions, Operating Modes, Programming and Interfacing.               | 10    |
| IV   | Programmable Peripheral Devices and Their Interfacing                                                                                                                                                                                                                                                                 |       |
|      | ProgrammableInterruptController8259:ArchitectureandSignalDescriptions.Command<br>Words and Modes of Operations. Programming and Interfacing; Keyboard /Display Controller 8279: Architecture and Signal<br>Descriptions ,Modes of operations, Programming and Interfacing.                                            | 10    |
| V    | DMA controller & Serial Communication: Interfacing and Programming                                                                                                                                                                                                                                                    |       |

2. Microprocessors: The 8086/8088, 80186/80286, 80386/80486 and the Pentium Family Bahadure, N. B.,-Prentice Hall of India Private Limited

#### **Text Books:**

1. Advanced Microprocessor and Peripherals-A. K. Ray and K.M. Bhurchandi, Tata McGraw Hill.

2. Microcomputersystems8086/8088family, Architecture, Programming and Design-Yu-Cheng Liu & Glenn AGibson, 2ndEdition-July2003, Prentice Hall of India

3. The 8086 Family:Design, Programming Interfacing,--John Uffenbeck, Prentice Hall of India

#### **Reference Books :**

1. Microprocessor and Interfacing, Programming& Hardware-Douglas V Hall, 2nd Edition, Tata McGraw Hill.

#### (ELECTIVE I)

#### Title of the Course : THEORY OFCOMMUNICATION ENGINEERING Course Code :5BEEN 05

| Course Scheme |          |           |                  |         | Evaluation Scheme (Theory) |     |    |     |       |
|---------------|----------|-----------|------------------|---------|----------------------------|-----|----|-----|-------|
| Lecture       | Tutorial | Practical | Periods/<br>week | Credits | Duration<br>Of<br>paper,   | MSE | IE | ESE | Total |
| 3             | 1        | 0         | 4                | 4       | 3                          | 10  | 10 | 80  | 100   |

| Unit | С                                                                                                                                                                                                                                                                                                                                         | Hours |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ι    | MODULATIONTECHNIQUES                                                                                                                                                                                                                                                                                                                      |       |
|      | Amplitudemodulation, AM-DSB, SSB, SSB-SC, Demodulation of AMsignals, Vestigials idebandtransmission, Frequency modulation, Demo dulation of FM signals, Frequency division multiplexing, Time division multiplexing.                                                                                                                      | 10    |
| Π    | ENERGY&POWERDENSITYSPECTRAOFANALOGANDDIGITALSIGNALS                                                                                                                                                                                                                                                                                       |       |
|      | Signaltransmissionthroughlinearsystems, Filtercharacteristicsoflinearsystems, Distortionlesstransmission, IdealandPracticalfilters, Energyand densityspectrum, Linecoding, Manchestercoding, Polarcoding, Bi-polarcoding, NRZcoding, RZ coding, PSD of digital signals, ControlofPSD by pulses haping, Nyquist first and second criteria. | 10    |
| Ш    | PROBABILITYANDRANDOMPROCESS                                                                                                                                                                                                                                                                                                               |       |
|      | Probability, Conditional Probability, Random Variables, Cumulative Distribution function, Probability Density Function & its properties, Statistical AveragesofRandomVariables, UniformDistribution, GaussianorNormalDistribution, Introductiontorandomprocess.                                                                           | 10    |
| IV   | PULSECOMMUNICATION                                                                                                                                                                                                                                                                                                                        |       |
|      | Pulsemodulation, PAM, PCM, DPCM, Deltamodulation, Adaptive deltamodulation, Matched filter detection of binary signals, Optimum receiver, Decision thres hold, Error probability, ASK, FSK & PSK systems, DPSK systems, M-ary communication systems.                                                                                      | 10    |
| V    | INFORMATIONTHEORY                                                                                                                                                                                                                                                                                                                         |       |
|      | Average information, Informationmeasure, Entropy, Channel capacity of discrete & continuous channel, Shannon's theorem, Hamming codes, Huffman coding, Linear block codes, Cyclic codes, Convolution codes, Trellis diagram.                                                                                                              | 10    |

#### **Text Books:**

Modern Analog & digital Communications, B.P.Lathi
 Communication Systems: Simon Haykins

#### **Reference Books :**

- Communication System:B.P. Lathi
   Communication System:A.B. Carlson

#### :ELECTRONIC SYSTEM DESIGN (ELECTIVE I) Title of the Course Course Code:5BEEN 05

| Course Scheme |          |           |                  |         |                          | Evaluation | n Scheme ( | (Theory) |       |
|---------------|----------|-----------|------------------|---------|--------------------------|------------|------------|----------|-------|
| Lecture       | Tutorial | Practical | Periods/<br>week | Credits | Duration<br>Of<br>paper, | MSE        | IE         | ESE      | Total |
| 3             | 1        | 0         | 4                | 4       | 3                        | 10         | 10         | 80       | 100   |

| Unit | С                                                                                                                                                                                                                                    | Hours |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ι    | Design of Power supply system: Unregulated D.C. power supply system with rectifiers and filters. Design of emitter follower                                                                                                          | 10    |
| П    | Design of class A small signal amplifiers: Emitter follower, Darlington pair amplifiers with and without Bootstrapping, Two stage direct coupled amplifier                                                                           | 10    |
| Ш    | Design of class A, Class B, Class AB audio power amplifier with drivers.                                                                                                                                                             | 10    |
| IV   | Design of sinusoidal oscillators: OPAMP based Wein bridge and Phase Shift oscillators with AGC circuits, Transistor based Hartley, Colpits and Crystal oscillators, Evaluation of figure of merit for all above oscillator circuits. | 10    |
| V    | Design of constant current sources, Design of function generators, Design of tuned amplifiers. Design of Butterworth, Chebyshev filters upto sixth order with VCVS and IGMF configuration.                                           | 10    |

**BOOKS**:

Regulated Power supply Handbook. Texas Instruments.
 Electronics : BJT's, FETS and Microcircuits – Anielo.

3. Monograph on Electronic circuit Design : Goyal&Khetan

## Title of the Course: SWITCHING THEORY AND AUTOMOTA (ELECTIVE I)Course Code:5BEEN 05.

| Course Scheme |          |           |                  |         |                             | Evaluation | n Scheme | (Theory) |       |
|---------------|----------|-----------|------------------|---------|-----------------------------|------------|----------|----------|-------|
| Lecture       | Tutorial | Practical | Periods/<br>week | Credits | Duration<br>ofpaper,<br>hrs | MSE        | IE       | ESE      | Total |
| 3             | 1        | 0         | 4                | 4       | 3                           | 10         | 10       | 80       | 100   |

| Unit | С                                                                                                                                                                                                                                                                  | Hours |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ι    | Switching algebra and Minimization of switching functions Switching algebra and functions, Boolean algebra, Boolean functions, K-Map for 6 variables, Minimization of Booleans function using tabulation method, relation and lattices, Venn diagram, sets theory. | 10    |
| Π    | Functional decomposition and symmetric functions Design of combinational logic circuits, contact networks, functional decomposition and symmetric functions                                                                                                        | 10    |
| III  | Threshold logic, threshold elements, capabilities and limitations of threshold logic, elementary properties, unate functions, synthesis of threshold functions, cascading of threshold elements.                                                                   | 10    |
| IV   | Finite state machine-Moore and Mealy synchronous sequential circuits, Design capabilities, Minimization and transformation of sequential machine, Sequence detector, Design of fundamental mode and pulse mode circuits                                            | 10    |
| V    | Structure of sequential machine, lattice of closed partitions, state assignment using partitions, Reduction of output dependency, Input<br>Independence and autonomous clock, homing sequence, synchronizing sequence, Adaptive Distinguishing experiments         | 10    |

#### **BOOKS:**

Textbooks:

1.Kohavi ZVI,' Switching and Finite Automata Theory', 2nd Edition, TMH 2.Modern switching theory by S.C.lee

#### **Reference Books:**

M.MorrisMano, 'Digital Design', 3rd Edition, Pearson Education.
 Donald D.Givone, 'Digital principles and Design', TMH.
 Anand Kumar,' Fundam entals of Digital Circuits' PHI.
 RP Jain 'Modern Digital Electronics', 2nd Edition, TMH
 Switching Theory & Logic Design by CVS Rao
 FUNDAMENTALS OF SWITCHING THEORY AND LOGIC DESIGN, JAAKKO T. ASTOLA

#### FIFTHSEMESTERBEELECTRONICS ENGINEERING

CourseCode :EN506

Title of the Course

## Title of the Course: LINEAR ELECTRONIC CIRCUITSCourse Code: 5BEEN 06

|         | (        | Course Schem | Evaluatio        | on Scheme(La | boratory) |     |       |
|---------|----------|--------------|------------------|--------------|-----------|-----|-------|
| Lecture | Tutorial | Practical    | Periods/<br>week | Credits      | TW        | POE | Total |
| 0       | 0        | 2            | 2                | 2            | 25        | 25  | 50    |

50 %ofthe experiments are based on ORCAD oranyEquivalentsimulation software.

| List of suggested practicals                                                              |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 1. To Study elementary circuit using Op-amp (Inverting, Non Inverting amplifiers, voltage |  |  |  |  |  |  |  |  |
| follower, Integrator and Differentiator)                                                  |  |  |  |  |  |  |  |  |
| 2. To study square and triangular wave generating circuits.                               |  |  |  |  |  |  |  |  |
| 3. To study Op-Amp parameters-I                                                           |  |  |  |  |  |  |  |  |
| (Input impedance, output impedance, slew rate, frequency response)                        |  |  |  |  |  |  |  |  |
| 4. To study Op-Amp parameters-II                                                          |  |  |  |  |  |  |  |  |
| (Input off set voltage, Input off setcurrent, Inputbias current, CMRR)                    |  |  |  |  |  |  |  |  |
| 5. To study instrumentation amplifier.                                                    |  |  |  |  |  |  |  |  |
| 6. To study logamplifier                                                                  |  |  |  |  |  |  |  |  |
| 7. To study weinbridgeoscillator                                                          |  |  |  |  |  |  |  |  |
| 8. To study Op-Amp as low pass filter.                                                    |  |  |  |  |  |  |  |  |
| 9. To study Op-Amp ashigh pass filter.                                                    |  |  |  |  |  |  |  |  |
| 10. To study IC555 timer.                                                                 |  |  |  |  |  |  |  |  |

#### Course Code: 5BEEN 07

|         | (        | Course Schem | Evaluatio        | on Scheme(La | boratory) |     |       |
|---------|----------|--------------|------------------|--------------|-----------|-----|-------|
| Lecture | Tutorial | Practical    | Periods/<br>week | Credits      | TW        | POE | Total |
| 0       | 0        | 2            | 2                | 2            | 25        | 25  | 50    |

|                   | List of suggested practical's                                                                                                                                                   |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.<br>sto         | Write8086Assembly language program (ALP) toad array of Nhexadecimal numbers red in the memory. Accept input from the user.                                                      |
| 2.V<br>wit<br>seg | Write 8086 ALP toper form non-over lapped and over lapped block transfer (with and th out string specific instructions).Block containing data can be defined in the data gment. |
| 3.V<br>4-d        | Write 8086 ALP toconvert4-digit Hexnumberintoits equivalent BCD number and ligit BCD number into its equivalent HEX number.                                                     |
| 4.                | Write 8086 ALP for the following operations on the string entered by the user.                                                                                                  |
| a) (              | Calculate Length of the string b)Reverse the string                                                                                                                             |
| 6. V<br>suc       | Write 8086 ALP toper form multiplication of two 8-bithexadecimalnumbers.Use ccessive addition and add and shift method. Accept input from the user.                             |
| 7. ]              | Interfacing and programming: 8255 with 8086, I/Otransfer and use of different ports                                                                                             |

8. Interfacing and programming: ADC/DAC with 8086

8. Interfacing and programming: 8254 with 8086, use of different timer modes.

9. Interfacing and programming: 8259 with 8086

10. Interfacing and programming of different peripherals: 8279,8257,8251

#### **VSEMESTERB.E. ELECTRRONICS ENGINEERING**

#### Title of the Course : POWER ELECTRONICS

**Course Code :5BEEN08** 

#### LABORATORY Common for B. E.

#### **Electronics/Electrical/Instrumentation Engineering**

| Course Scheme |          |           |    | Evaluation | Scheme (Labora | atory) |
|---------------|----------|-----------|----|------------|----------------|--------|
| Lecture       | Tutorial | Practical | TW | POE        | Total          |        |
| 0             | 0        | 2         | 25 | 25         | 50             |        |

#### **Course Objectives:**

- 1. To become familiarizeandex plain the physical principles, operations, structural detail sand their characteristics of power semi conductorr devices.
- 2. To understand the variouste chniques of turning on & turning off of the thyristors.
- 3. To describe the operation of different rectifiers, cyclo converters, inverters and choppers with their applications.

#### **Suggested list of Experiments:**

- 1) To study I-V characteristics of SCR.
- 2) To study I-V characteristics of DIAC.
- 3) To study I-V characteristics of TRIAC.
- 4) Phase control of TRIA Cussing DIAC.
- 5) To study R firing, RC firing and UJT firing circuits.
- 6) To study oscillating chopper.
- 7) To study half controlled half wave bridge rectifier.
- 8) To study full controlled full wave bridge rectifier.
- 9) To study I-Characteristics of Power MOSFET.
- 10) To study I-V characteristics of IGBT.

#### FIFTH SEMESTER B.E. ELECTRONICS AND COMMUNICATION ENGINEERING/ ELECTRONICS AND TELECOMMUNICATION ENGINEERING

#### Course Code: 5BEEN09

#### Title of the Course: MINOR PROJECT & SEMINAR

|         |          | Course Scheme | Evaluati         | on Scheme(Lab | ooratory) |     |       |
|---------|----------|---------------|------------------|---------------|-----------|-----|-------|
| Lecture | Tutorial | Practical     | Periods/<br>week | Credits       | TW        | POE | Total |
| 0       | 0        | 2             | 2                | 2             | 50        | 0   | 50    |

| ~                                                                                                        |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Contents                                                                                                 |  |  |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |  |  |
| After completing this Minor Project the student should be able to practice complete process of designing |  |  |  |  |  |  |  |
| and making of PCB and Electronics circuit design                                                         |  |  |  |  |  |  |  |
| 1. PCB Layout: Drawing PCB layout, standard rules, precautions, use of software like Eagle,              |  |  |  |  |  |  |  |
| ORCAD Layout for PCB layout                                                                              |  |  |  |  |  |  |  |
| 2. PCB manufacturing process: Mirror image of PCB layout, printing, exposing, itching, tanning of        |  |  |  |  |  |  |  |
| PCB                                                                                                      |  |  |  |  |  |  |  |
| 3. Fabrication of circuit on PCB: Mounting components, soldering, testing                                |  |  |  |  |  |  |  |

A group of students (not more than five) should submit the Project Report based on Minor project **References:** 

1. PCB Design by Boshart, TMH publications.

2. Integrated Circuit Fabrication Technology by Elliot TMH publications. Manuals of ORCAD and Eagle

# VI Semester B.E. Electronics Engineering

#### SIXSITH SEMESTER BE ELECTRONICS ENGINEERING

#### Course Code :6BEEN01

#### Title of the Course : PRINCIPLES OF COMMUNICATIONENGINEERING

| Course Scheme |          |           |              | Evaluation Scheme (Theory) |                                   |    |    |    |     |
|---------------|----------|-----------|--------------|----------------------------|-----------------------------------|----|----|----|-----|
| Lecture       | Tutorial | Practical | Periods/week | Credits                    | Duration of paper, hrs MSE IE ESE |    |    |    |     |
| 3             | 1        | 0         | 4            | 5                          | 3                                 | 10 | 10 | 80 | 100 |

| Units | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hours |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1     | Wave propagation & Noise<br>Fundamentals of electromagnetic waves, Ground wave propagation, sky wave, space wave, and troposphere scatter. Electromagnetic<br>frequency spectrum, communication systems, need of modulation and its types. Noise: Sources of noise and its types, signal to noise<br>ratio, noise<br>factor noise figure noise temperature noise equivalent temperature                                                                                                                                                                                                                                                  | 10    |
| 2     | Amplitude Modulation :<br>Amplitude modulation (AM), double side band (DSB), double side band suppressed carrier (DSB-SC), single side band (SSB), vestigial side band modulation (VSB): generation, demodulation, Independent side band (ISB) transmission, modulation index, frequency spectrum. Power requirement of these Systems. AM transmitter (broadcast and low power), Noise in AM systems.                                                                                                                                                                                                                                    | 09    |
| 3     | Angle Modulation :<br>Generalized concept and features of angle modulation; Frequency modulation (FM): modulation index, power requirement,<br>frequency spectrum, bandwidth, phasor comparison of narrowband FM and AM waves, Generation of FM, Demodulation of FM,<br>interference in FM system, pre-emphasis and de-emphasis techniques, FM receiver, noise in FM receiver. Phase modulation (PM):<br>modulation index, power requirement, frequency spectrum, bandwidth analysis of narrow band FM, wide band FM and PM,<br>interference in angle modulated<br>system, FM transmitter (broadcast and low power). Noise in FM systems | 09    |
| 4     | Radio Reciever :<br>TRF and super-heterodyne receiver, AGC, FM receiver, sensitivity, selectivity, image frequency rejection measurements,<br>communication receiver and its special features. Transceivers for wireless mobile communication devices. Types of antenna,<br>radiation pattern, antenna arrays,<br>turnstile, loop, log periodic, UHF and microwave antenna.                                                                                                                                                                                                                                                              | 09    |
| 5     | Analog Pulse Modulation:<br>Sampling theorem, Pulse Amplitude Modulation (PAM), Pulse Width Modulation (PWM), Pulse Position Modulation (PPM),<br>generation & Detection of these pulse modulated signals, Pulse Code Modulation (PCM), Differential Pulse Code Modulation<br>(DPCM), Delta Modulation (DM),AdaptiveDeltaModulation(ADM).TimeDivisionMultiplexing(TDM)&Frequency<br>Division Multiplexing (FDM)                                                                                                                                                                                                                          | 08    |

#### **Text Books:**

1) "Electronic Communication Systems", "Kennedy", TMH

#### **References**:

- 1. Introduction to Analog & Digital Communication Systems", "Haykin Simon", JohnWile
- 2. "Modern Analog & Digital Communication Systems", "Lathi B.P", JohnWiley

3. "Communication Electronics Principles and Applications", "Frenzel", TMH, 3<sup>rd</sup>Edition

#### SIXTH SEMESTER BE ELECTRONICS ENGINEERING

Course Code : 6BEEN 02

#### Title of the Course : FIELDS AND RADIATINGSYSTEMS

|         | Course Scheme |           |                  |         | Evaluation Scheme (Theory) |     |    |     |       |
|---------|---------------|-----------|------------------|---------|----------------------------|-----|----|-----|-------|
| Lecture | Tutorial      | Practical | Periods/<br>week | Credits | Duration of paper, hrs     | MSE | IE | ESE | Total |
| 3       | 1             | 0         | 4                | 4       | 3                          | 10  | 10 | 80  | 100   |

| Unit | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hours |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| Ι    | Transmission Lines:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |  |  |  |  |
|      | Contents       1         ansmission Lines:       1         usic Principles of Transmission lines, Line Equations, Transmission line parameters, aracteristic impedance, propagation constant, attenuation constant and phase constant, reflection efficient and VSWR, Introduction to Smith Chart And Stub matching.         uided waves and waveguide:       1         rallel planes Wave Guide: Field Equation, TE, TM, TEM waves and their characteristics, tenuation in parallel plane guides, wave impedances. Rectangular waveguides: Field Equation, M, TE waves in rectangular guides and their characteristics, tve velocity, guide wavelength, wave impedances.         uidiation and Antenna:       1         alar and vector potentials, Concept of retarded potentials, field due to a current elements, power diated and radiation resistance for field due to a dipole, Antenna Parameters: radiation intensity, rective gain , directivity , antenna gain ,Antenna Efficiency, Effective aperture of an antenna, fective Length, reciprocity theorem applied antennas.         ntenna Array:       1         rious forms of Antenna Arrays: Broadside Array, End Fire Array, Array of Point Sources, Two |       |  |  |  |  |
| II   | Guided waves and waveguide:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |  |  |  |  |
|      | Parallel planes Wave Guide: Field Equation, TE, TM, TEM waves and their characteristics,<br>Attenuation in parallel plane guides, wave impedances. Rectangular waveguides: Field Equation,<br>TM, TE waves in rectangular guides and their characteristics,<br>wave velocity, guide wavelength, wave impedances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10    |  |  |  |  |
| 111  | Radiation and Antenna:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |  |  |  |  |
|      | Scalar and vector potentials, Concept of retarded potentials, field due to a current elements, power radiated and radiation resistance for field due to a dipole, Antenna Parameters: radiation intensity, Directive gain , directivity , antenna gain ,Antenna Efficiency, Effective aperture of an antenna, Effective Length, reciprocity theorem applied to antennas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8     |  |  |  |  |
| IV   | Antenna Array:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |  |  |  |  |
|      | Various forms of Antenna Arrays: Broadside Array, End Fire Array, Array of Point Sources, Two<br>element arrays and their directional characteristics, linear array analysis of broadside and end-fire<br>arrays, pattern multiplication, binomial arrays, Dolph-<br>Tchebyscheff Array.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9     |  |  |  |  |
| V    | Practical Antenna:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |  |  |  |  |
|      | Parabolic reflectors, Lens antennas, Folded dipole, Turnstile Antenna, YagiUda antenna, Log-periodic antennas, Horn antennas, Traveling wave antennas, Cassegrain antenna.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8     |  |  |  |  |

#### **Text Books:**

- 1. Edward C. Jordan & Keith G. Balmain ,,,Electromagnetic waves and radiating systems", Prentice- Hall,2006
- 2. K. D. Prasad, "Antenna And Wave Propagation", SatyaPrakashan

#### **Reference Books:**

- 1. John D. Kraus, "Electromagnetic", Tata Mcgraw Hill, Book Co. NewYork.
- 2. RajeshwariChatterjee, 'AntennaTheoryandPractice', NewAgeInternational(P)Limited.

#### SIXTH SEMESTER BE ELECTRONICS ENGINEERING

Course Code :6 BEEN 03

# Title of the Course: B.E. V- SEMESTER (ELECTRONICS/ E&TC) ANDB.E. VI: SEMESTER (ELECTRICAL/E&P/EEE)SUBJECT: CONTROLSYSTEM

|         | Cour                                                                                                                                                                                                                                                                                                                                                                  | se Scheme                                                                            |                                                                  |                                                            | Evaluation Scheme (Theory)                   |                    |                   |               |       |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|--------------------|-------------------|---------------|-------|--|
| Lecture | Tutorial                                                                                                                                                                                                                                                                                                                                                              | Practical                                                                            | Periods/ week                                                    | Credits                                                    | Duration of paper, hrs                       | MSE                | IE                | ESE           | Total |  |
| 3       | 1                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                    | 4                                                                | 4                                                          | 3                                            | 10                 | 10                | 80            | 100   |  |
| Unit    |                                                                                                                                                                                                                                                                                                                                                                       | Co                                                                                   | ntents                                                           |                                                            |                                              |                    |                   | I             | Hours |  |
| Ι       | Systems and their<br>Basic elements in<br>Thermal Systems,<br>on sensitivity to pa                                                                                                                                                                                                                                                                                    | <b>Representation</b><br>Control Systems,<br>Transfer Functior<br>trameter variation | Open loop and C<br>n, Block diagram<br>and reduction of t        | Closed loop Systems,<br>reduction technique,<br>the noise. | , Electrical analog<br>Signal flow graph     | y of Mecl          | hanica<br>of feed | l and<br>back | 10    |  |
| II      | <b>Time Response Analysis</b><br>Time response, Time domain specification, Types of test inputs, First and Second order system response, Error coefficient, Generalized error series, Steady State Error, P,PI,PID modes of feedback control.                                                                                                                         |                                                                                      |                                                                  |                                                            |                                              |                    |                   |               |       |  |
| Ш       | <b>Stability of Control System</b><br>Stability of control system, location of roots in S plane for stability, characteristics equation, Routh-Hurwitz criterion, Special cases for determining relative stability, Root locus construction, Root location and its effect on time response, Effect of pole-zero addition on previous of immediate stability.          |                                                                                      |                                                                  |                                                            |                                              |                    |                   |               |       |  |
| IV      | Frequency response methods         Frequency response of linear system, Logarithmic frequency response (Bode) plots from transfer function for various systems, Polar plots for various systems, Estimation of approximate transfer function from the frequency response, Stability analysis from Bode plots, Nyquist criterion, Nyquist Plots and stability analysis |                                                                                      |                                                                  |                                                            |                                              |                    |                   |               |       |  |
| V       | State Space Analy<br>State variable meth<br>matrix differential                                                                                                                                                                                                                                                                                                       | ysis of Control Sy<br>nod of analysis, Ch<br>equation, Standar                       | v <b>stem</b><br>haracteristics of system<br>d form, relation be | stem state, Choice of<br>etween transfer funct             | state variables, rep<br>tion and state varia | resentatio<br>ble. | on of v           | ector         | 10    |  |
|         |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |                                                                  |                                                            |                                              |                    |                   |               | 50    |  |

#### **Text Books :**

- Automatic Control Systems (with MATLAB Programs) by S.HasanSaeed, S.K.Kataria&Sons. 1.
- Control System Engineering by NagrathI.J.Gopal M, WileyEastern. Modern Control Systems by Ogata K,Prentice Hall ofIndia. 2.
- 3.
- 4. Linear Control Systems by B.S.Manke, KhannaPublication.

#### **Reference Books :**

- 1. Analysis and Design of Control Systems using MATLAB by Rao.V.Dukkipati,NewAge.
- Modern Control System by Richard Dorf, Robert Bishop, IIth edition2008. 2.

#### VI SEMESTER B.E. ELECTRONICS ENGINEERING

#### **Course Code: 6BEEN04**

#### Title of the Course : MICROCONTROLLER AND ITS APPLICATIONS

| Course Scheme |                                                 |   |   | Evaluation S           | Scheme ( | Theory | 7)  |       |     |
|---------------|-------------------------------------------------|---|---|------------------------|----------|--------|-----|-------|-----|
| Lecture       | Lecture Tutorial Practical Periods/week Credits |   |   | Duration of paper, hrs | MSE      | IE     | ESE | Total |     |
| 3             | 1                                               | 0 | 4 | 3                      | 3        | 10     | 10  | 80    | 100 |

| Units | Contents                                                                                                                                                                                                | Hours |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1     | Evolution of microcontrollers, The 8051 Microcontroller: Block diagram, programming model, pin diagram, flag register and PSW, memory organization, stack and stack pointer, special function registers | 10    |
| 2     | I/O ports, Interrupts, counters and timers, Serial data Input/output, external memory                                                                                                                   | 08    |
| 3     | Addressing modes, Instruction set: Data transfer, logical, arithmetic, branching,<br>Assembly language programming                                                                                      | 10    |
| 4     | Interfacing: keyboard, LED and LCD, ADC/DAC, stepper motor interfacing,                                                                                                                                 | 09    |
| 5     | AT89C51microcontroller: Pin diagram, Architecture, features of flash memory<br>AT89C2051microcontroller: the baby 8051, pin diagram, architecture, flash memory                                         | 8     |
|       | Total                                                                                                                                                                                                   | 45    |

#### **Text Books :**

- 1. 8051 Microcontroller and Embedded Systems using Assembly and C by Keneth J. Ayala, Dhananjay V. GadreCengageLearning
- 2. The 8051 Microcontroller Hardware, Software and applications by V. Udayshankara, M. S. Mallukarjunswamy, Mcgraw -Hill
- 3. 8051 Microcontroller and Embedded Systems using Assembly and C by Muhammad Ali Mazidi, Janice GillispieMazidi and RolinD.MacKinlay, Pearson Education, Second Edition.

#### **Reference Books :**

- 1. Microprocessor and Microcontroller by R. Theagarajan, Sci Tech Publication, Chennai.
- 2. Architecture, Programming, Interfacing and System Design by Raj Kamal, PearsonEducation.

#### SIXTH SEMESTER BE ELECTRONICS ENGINEERING

#### Course Code : 6BEEN 05 Title of the Course : ELECTIVE II COMPUTER ARCHITECTURE ANDORGANIZATION

|         | Course Scheme |           |                  | Evaluation Scheme (Theory) |                            |     |    |     |       |
|---------|---------------|-----------|------------------|----------------------------|----------------------------|-----|----|-----|-------|
| Lecture | Tutorial      | Practical | Periods/<br>week | Credits                    | Duration<br>of paper (hrs) | MSE | IE | ESE | Total |
| 3       | 1             | 0         | 4                | 4                          | 3                          | 10  | 10 | 80  | 100   |

| Unit | Contents                                                                                                                                                                                                                                                                                                                                  | Hours |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ι    | Levels Of Design                                                                                                                                                                                                                                                                                                                          |       |
|      | Basic structure and characteristics of computer hardware and software, functional units, basic operational concepts, bus structures, software. Component details, Combinational and sequential components, Description language, Design methods, Design components and design techniques.                                                 | 9     |
|      | Processor Design                                                                                                                                                                                                                                                                                                                          |       |
| 11   | The processing unit: some fundamental concepts, Computer peripherals : I/O devices.<br>Architecture of CPU, Performance parameters, Instruction format, RISC, CISC, Addressing modes, Parallel<br>processing, pipelining                                                                                                                  | 8     |
|      | Micro-programmed Control                                                                                                                                                                                                                                                                                                                  |       |
| III  | Micro-programmed control: Microinstructions, grouping of control signals, micro program sequencing, micro instruction with next address field, perfecting microinstruction, emulation, introduction to microprogramming.                                                                                                                  | 10    |
|      | Number Format & Arithmetic Algorithms                                                                                                                                                                                                                                                                                                     |       |
| IV   | Floating point arithmetic, IEEE 754 floating point format, Single precision and double precision IEEE format, addition of positive numbers, addition and subtraction, arithmetic and branching conditions, multiplications of positive numbers, signed-operand multiplication, fast multiplication, restoring and non restoring division. | 10    |
| V    | Memory organization                                                                                                                                                                                                                                                                                                                       |       |
| v    | Basic concepts of memory, semiconductor RAM memories, memory system considerations, semiconductor ROM memories, multiple module memories and interleaving, locality of reference, cache memories, virtual memories, CAM, replacement policies.                                                                                            | 8     |

#### **Reference Books:**

- 1. V. Carl Hamacher, "Computer Organization", Tata McGraw Hill Inc, 5 thedition
- 2. William Stallings, "Computer Organization And Architecture", PHI edition

#### SIXTH SEMESTER BE ELECTRONICS ENGINEERING

## Course Code:6BEEN 05Title of the Course:ELECTIVE IIDIGITAL COMMUNICATION

| Course Scheme |          |           |                  | Evaluation Scheme (Theory) |                               |     |    |     |       |
|---------------|----------|-----------|------------------|----------------------------|-------------------------------|-----|----|-----|-------|
| Lecture       | Tutorial | Practical | Periods/<br>week | Credits                    | Duration<br>of paper<br>(hrs) | MSE | IE | ESE | Total |
| 3             | 1        | 0         | 4                | 4                          | 3                             | 10  | 10 | 80  | 100   |

| Unit | Contents                                                                                                                                                                                                                                                                                                                  | Hours |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ι    | Digital Communication Concept Review of Random variables, PDFs & CDFs, Central limit Theorem. Model of digital communication system, Gram Schmitt Orthogonalization procedure, signal space concept, Geometric interpretation of signals, probability of error, correlation receiver, matched filter receiver.            |       |
| П    | Source & Waveform Coding Methods<br>Source coding Theorem, Huffman Coding, L-Z encoding algorithm, rate distortion theory for optimum quantization,<br>scalar & vector quantization,.<br>Waveform coding methods: ADPCM, Adaptive Sub -Band & Transform coding, LP & CELP coding.                                         |       |
| III  | Digital Modulation Techniques<br>Coherent Binary: QPSK, MSK, Gaussian MSK, DPSK, Memory less modulation methods, linear modulation with<br>memory, nonlinear modulation methods with memory: CPFSK, CPM.                                                                                                                  |       |
| IV   | Channel Coding (PART -1)<br>Introduction to Galois field, Construction of Galois field GF (2 m) & its basic properties. Types of error control:<br>Forward error correction (FEC), Automatic repeat request system (ARQ). Convolution encoding and decoding distance<br>properties, Viterbi algorithm and Fano algorithm. |       |
|      | Channel Coding (PART -II)                                                                                                                                                                                                                                                                                                 |       |
| V    | Trellis coded modulation, Introduction to Turbo coding, & Reed Solomon Codes: encoding & decoding, Low density parity check coding (LDPC                                                                                                                                                                                  |       |

#### **Text Books:**

1.Digital communication: John G Prokis (TMG) 2.Digital communication: Simon Haykin (WEP)

#### **Reference Books:**

Lathi B.P. -Modern Digital and Analog communications systems -PRISM Indian Ed.
 Digital Communication: J.S.Chitode
 Digital Communication (Fundamentals & applications): Bernard Scalr
 Introduction to Error Control Codes: Salvatore Gravano
 OFDM For wireless communication systems: Ramjee Prasad
 Modern Communication systems (Principles and application): Leon W. Couch II (PHI)
 Error Control Coding: Shu Lin & Daniel J.Costello

#### SIXTH SEMESTER BE ELECTRONICS ENGINEERING

#### Course Code : 6BEEN605

Title of the Course : ELECTIVE II Mechatronics

| Course Scheme |          |           |                  |         | Evaluation Scheme (Theory) |     |    |     |       |
|---------------|----------|-----------|------------------|---------|----------------------------|-----|----|-----|-------|
| Lecture       | Tutorial | Practical | Periods/<br>week | Credits | Duration<br>of paper (hrs) | MSE | IE | ESE | Total |
| 3             | 1        | 0         | 4                | 4       | 3                          | 10  | 10 | 80  | 100   |

| ľ                   | Unit Contents |                                                                                                                                                                                                                                           |                 |  |  |  |  |
|---------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
|                     | Ι             | . Introduction to Transducer and Mechatronics: Measurement systems, static characteristics, Classification of                                                                                                                             |                 |  |  |  |  |
|                     |               | Iransducers and Sensors, Basic Divider Circuits, Bridge Circuits, Filters, Level measurements, strain measurements:                                                                                                                       |                 |  |  |  |  |
|                     |               | Strain Gauge principles, types, strain gauge circuits, Load cells, temperature Compensation. Temperature measurement: Thermisters RTD Thermocounles                                                                                       |                 |  |  |  |  |
|                     |               | incustrement. Thermisters, KTD, Thermocouples                                                                                                                                                                                             |                 |  |  |  |  |
|                     |               | Mechanical Sensors, Displacement& Position sensors: Potentiometric Sensor, Capacitive and Inductive Sensors,                                                                                                                              |                 |  |  |  |  |
|                     | П             | Variable Reluctance Sensors, Linear Variable Differential Transformers. Motion Sensors: Translational and Rotary                                                                                                                          |                 |  |  |  |  |
|                     |               | Optical Encoders, Tachometers with output signal as electrical quantity.                                                                                                                                                                  |                 |  |  |  |  |
|                     |               | Converters and Controller and Data Acquisition system: Concept of sampling, sample & hold operation, analog to                                                                                                                            |                 |  |  |  |  |
|                     |               | digital converters, digital to analog converters. Introduction to SCADA & its applications, System Models:                                                                                                                                |                 |  |  |  |  |
|                     | III           | Mathematical models, introduction to mechanical, electrical, fluid and thermal system. Rotational and transnational                                                                                                                       |                 |  |  |  |  |
|                     |               | systems, Basic concepts of transfer function.                                                                                                                                                                                             |                 |  |  |  |  |
|                     |               | Controller Principles Control systems: Types of control system, Open loop, closed loop systems, transfer functions, feed back and feed forward control systems and their applications. Process Characteristics: Process equation, process |                 |  |  |  |  |
|                     | IV            | load. Error. Variable range. Control Parameter Range. Dead time.                                                                                                                                                                          |                 |  |  |  |  |
| ·                   | 1 V           | Controller Modes: Continuous Controller Modes. Proportional Controller. Integral                                                                                                                                                          |                 |  |  |  |  |
|                     |               | Controller, Derivative Controller, with mathematical equations, advantages, disadvantages and applications.                                                                                                                               |                 |  |  |  |  |
|                     | V             | Composite controller Modes: Proportional, Proportional +Integral(PI), Proportional+ Derivative(PD), Proportional +                                                                                                                        |                 |  |  |  |  |
|                     |               | Integral + Derivative(PID) controllers, with simple numerical treatment.                                                                                                                                                                  |                 |  |  |  |  |
| <b>TEXT BOOI</b>    | K 1] Jo       | hnson C.D., Process Control Instrumentation Technology, Prentice Hall of India Pvt Ltd., New Delhi.                                                                                                                                       |                 |  |  |  |  |
| <b>Reference Bo</b> | ooks          | 1 Doebelin E.O., Measurement System-Application and Design, Tata McGraw Hill Publications Ltd., New Delhi.                                                                                                                                |                 |  |  |  |  |
|                     |               | 2] Bolton W., Mechatronics : A Multidisciplinary Approach Pearson                                                                                                                                                                         |                 |  |  |  |  |
|                     |               | Education                                                                                                                                                                                                                                 |                 |  |  |  |  |
|                     |               | 3] Rangan C.S. Sarma G.R., Mani V.S, Instrumentation Devices and Systems, Tata McGraw Hill Publishing Company                                                                                                                             | Ltd.,New Delhi. |  |  |  |  |
|                     |               | 4] Histand B.H. AlciatoreD.G. Introduction to Mechatronics and Measurement Systems. HMT, Mechatronics, HMT.                                                                                                                               |                 |  |  |  |  |
|                     |               | 5] Mahalik N. g Company Ltd., New Delhi.                                                                                                                                                                                                  |                 |  |  |  |  |

#### **Text Books:**

1.Digital communication: John G Prokis (TMG) 2.Digital communication: Simon Haykin (WEP)

#### **Reference Books:**

Lathi B.P. -Modern Digital and Analog communications systems -PRISM Indian Ed.
 Digital Communication: J.S.Chitode
 Digital Communication (Fundamentals & applications): Bernard Scalr
 Introduction to Error Control Codes: Salvatore Gravano
 OFDM For wireless communication systems: Ramjee Prasad
 Modern Communication systems (Principles and application): Leon W. Couch II (PHI)
 Error Control Coding: Shu Lin & Daniel J.Costello

#### FIFTH SEMESTER BE ELECTRONICS ENGINEERING

Course Code :6BEEN06

#### Title of the Course : PRINCIPLES OF COMMUNICATION ENGINEERING(LABORATORY)

|         | Course Sche | eme       | Evaluation Scheme(Laboratory) |         |    |     |       |
|---------|-------------|-----------|-------------------------------|---------|----|-----|-------|
| Lecture | Tutorial    | Practical | Periods/<br>week              | Credits | TW | РОЕ | Total |
| 0       | 0           | 2         | 2                             | 2       | 25 | 25  | 50    |

| List of suggested practical's                      |
|----------------------------------------------------|
| 1. Study of Amplitude modulation and demodulation. |
| 2. Study of Frequency modulation and Demodulation. |
| 3. Study of AM transmitter And Receiver.           |
| 4. Study of FM transmitter and receiver.           |
| 5. Study of SSB and DSB.                           |
| 6. Study of PAM.                                   |
| 7. Study of PWM.                                   |
| 8.Study of PPM                                     |
| 9. Study of Delta Modulation.                      |
| 10. Study of Adaptive Delta Modulation.            |
| 11. Study of TDM.                                  |
| 12. Study of FDM.                                  |
|                                                    |

#### SIXTH SEMESTER B.E. ELECTRONICS ENGINEERING

#### Course Code :6BEEN07

#### Title of the Course : MICROCONTROLLER AND APPLICATIONSLABORATORY

|         | Course Scheme |           | Evaluation Scheme (L | laboratory) |     |       |
|---------|---------------|-----------|----------------------|-------------|-----|-------|
| Lecture | Tutorial      | Practical | Credits              | TW          | POE | Total |
| 0       | 0             | 2         | 2                    | 25          | 25  | 50    |

#### **Course Objectives:**

- Understand Hardware organization, Instruction Set, Bus structure, peripheral Support devices and Application of 8051Microcontroller.
- Learn the Assembly Language as well as C language programming for8051.
- Develop lab experiments based on8051.
- Understand the use of real-time interrupt structure, programming timer and precise timing Control, Analog to Digital converter, Serial communication and system interface.

#### Suggested list of experiments: (Using Keil software):-

- 1. Programs illustrating Data Transfer Operations
- 2. Programs illustrating Arithmetic Operations
- 3. Programs illustrating Boolean & Logical Operations
- 4. Programs illustrating Conditional CALL & RETURN instructions
- 5. Programs illustrating different code conversions
- 6. Programs using Timers, Counter, Serial Ports and Interrupts
- 7. Keyboard interface to8051
- 8. Traffic light interface to8051
- 9. External ADC and Temperature control interface to8051
- 10. Logic controller Interface to8051
- 11. Elevator interface to8051
- 12. ON/OFF alternate LEDs by sequential keys
- 13. Display string on LCD using
- 14. Create the delays with timers & interrupts
- 15. Read A/D value, convert it to actual & display it on LCD

#### **Course Outcome:**

To understand the architecture of 8051 microcontroller and how to write Assembly and high level languages as well as interfacing.

### SIXTH SEMESTER B.E. ELECTRONICS AND COMMUNICATION ENGINEERING/ ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Course Code : 6BEEN608

#### Title of the Course : INDUSTRIAL TRAINING/ INTERNSHIP/CASE STUDIES

|         | Course Scheme |           | Evalu   | ation Scheme (Lab | oratory) |       |
|---------|---------------|-----------|---------|-------------------|----------|-------|
| Lecture | Tutorial      | Practical | Credits | TW                | POE      | Total |
| 0       | 0             | 2         | 2       | 25                | 25       | 50    |

Two to four weeks of training in an Industry/Institute/Research organization/NGO/Environmental studies. The internship should give exposure to the practical aspects of the discipline. In addition, the student may also work on a specified task or project which may be assigned to him/her. The outcome of the internship should be presented in the form of a certified report.

# Industrial Training /Internship/Case Studies:- It is to be completed during the summer vacation after completion of fourth semester and/or winter vacation after the completion of Fifth semester and its planning and allocation should be done during the fourth/ fifth semester and its marks will be awarded in the sixth semester for subject code 6BEET09 on submission of the certified relevant report at the end of sixth semester.

on Minor project

**References:** 

- 1. PCB Design by Bosh art, TMH publications.
- 2. Integrated Circuit Fabrication Technology by Elliot TMH publications.
- 3. Manuals of ORCAD and Eagle.